
Classifying Music 
Subgenres Using Neural 
Networks

Presented by: Ryan Cafarelli, Sam Schrader, 
Rohith Kumar Sura, and Daniel Tucek



Introduction

Problem: Automatic classification of EDM subgenres

- Useful for recommendation systems and suggesting tags for user content

Generalization of our networks:

● Input- Audio files that are preprocessed into other features (e.g. Spectrograms and 

MFCCs)

● Output- The predicted label for the music subgenre



Related Work

● A Genre classification using Support Vector Machine (SVM) and their comparison in 
terms of accuracy with other methods.

● A classifier for Jazz subgenre music classification using an LSTM layer as the core.
● A 5-layer Independently RNN with scattering coefficient for preprocessing the data to 

complete the music genre classification.
● Music genre classification with different activation functions in a neural network.
● Examined the performance of convolutional neural networks (CNN) and recurrent neural 

networks (RNN).

Technique No. of Genres Accuracy

SVM 5 92%

LSTM 3 Jazz subgenres 80.30%

IndRNN 7 96%

RNN 10 33%

CNN 10 59%



Dataset and Features

- Top 100 songs in each of 23 genres on 

Beatport as of November 29, 2016 

(Set 1 from Caparrini)
- Pulled 2-minute audio samples from 

Beatport using a web scraper

- 2,258 out of 2,300 tracks 

(~98.2%)

- Different preprocessing for each 

model
- Spectrograms for CNN

- Time series of MFCCs for LSTM

Genre Track 
Count

TechHouse
PsyTrance
BigRoom
HardDance
Techno
Minimal
Trance

100

FutureHouse
ElectroHouse
Dubstep
House

99

IndieDanceNuDisco
ReggaeDub
GlitchHop
HardcoreHardTechno 
DrumAndBass
DeepHouse
ProgressiveHouse

98

FunkRAndB 97

Breaks
ElectronicaDowntempo

96

Dance 94

HipHop 93



Methods

CNN

Image classification of audio spectrograms

● Segmentation of image into 5 second intervals

● Multi-layer approach:

○ Convolution (filters: 8, 16, 32, 64, 128)

○ Normalization

○ Activation (relu)

○ Max Pooling

● Fully connected classification:

○ Flatten

○ Dropout (30%)

○ Dense (softmax)

Packages (Librosa, Keras, Adam)

RNN-LSTM

● Input: MFCCs that were calculated by 

dividing the audio time series into equal 

length segments 

● Layers:

○ Two LSTM (tanh activation and 

sigmoid recurrent activation)

○ Dense (relu)

○ Dropout (30%)

○ Dense (softmax)

Packages (Librosa, Keras, Adam)



Preliminary Results

CNN

Training: 21%

Testing: 19%

Parameters/Hyperparameter:

● Batch size: 32

● Learning Rate: 0.0005

● Epochs: 20

● Image size: 720x720

Experiments to hopefully improve:

● More training data

● Fewer nodes in model

RNN-LSTM

Training: 62%

Validation: 43%

Testing: 45%

Hyperparameters:

● Batch size: 32

● Learning Rate: 0.001

● Epochs: 30


