
Introduction to
Artificial Intelligence Exam Prep 3 Solutions

Q1. MedianMiniMax
You’re living in utopia! Despite living in utopia, you still believe that you need to maximize your utility in life, other people want
to minimize your utility, and the world is a 0 sum game. But because you live in utopia, a benevolent social planner occasionally
steps in and chooses an option that is a compromise. Essentially, the social planner (represented as the pentagon) is a median
node that chooses the successor with median utility. Your struggle with your fellow citizens can be modelled as follows:

There are some nodes that we are sometimes able to prune. In each part, mark all of the terminal nodes such that there exists
a possible situation for which the node can be pruned. In other words, you must consider all possible pruning situations.
Assume that evaluation order is left to right and all Vi’s are distinct.

Note that as long as there exists ANY pruning situation (does not have to be the same situation for every node), you should mark
the node as prunable. Also, alpha-beta pruning does not apply here, simply prune a sub-tree when you can reason that its value
will not affect your final utility.

(a) □ V1
□ V2
□ V3
□ V4
■ None

(b) □ V5
■ V6
■ V7
■ V8
□ None

(c) □ V9
□ V10
■ V11
■ V12
□ None

(d) □ V13
■ V14
■ V15
■ V16
□ None
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Part a:
For the left median node with three children, at least two of the childrens’ values must be known since one of them will be
guaranteed to be the value of the median node passed up to the final maximizer. For this reason, none of the nodes in part a can
be pruned.

Part b (pruning V7, V8 ):
Letmin1, min2, min3 be the values of the threeminimizer nodes
in this subtree.

In this case, we may not need to know the final valuemin3. The
reason for this is that we may be able to put a bound on its value
after exploring only partially, and determine the value of the
median node as eithermin1 ormin2 ifmin3 ≤ min (min1, min2)
or min3 ≥ max (min1, min2).

We can put an upper bound on min3 by exploring the left
subtree V5, V6 and if max (V5, V6) is lower than both min1
and min2, the median node’s value is set as the smaller of
min1, min2 and we don’t have to explore V7, V8 in Figure 1.

Part b (pruning V6):
It’s possible for us to put a lower bound on min3. If V5 is larger
than both min1 and min2, we do not need to explore V6.

The reason for this is subtle, but if the minimizer chooses the
left subtree, we know that min3 ≥ V5 ≥ max (min1, min2) and
we don’t need V6 to get the correct value for the median node
which will be the larger of min1, min2.

If the minimizer chooses the value of the right subtree, the
value at V6 is unnecessary again since the minimizer never
chose its subtree.
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Part c (pruning V11, V12 ):
Assume the highest maximizer node has a current value
max1 ≥ Z set by the left subtree and the three minimizers
on this right subtree have value min1, min2, min3.

In this part, if min1 ≤ max (V9, V10) ≤ Z, we do not have
to explore V11, V12. Once again, the reasoning is subtle, but
we can now realize if either min2 ≤ Z or min3 ≤ Z then the
value of the right median node is for sure ≤ Z and is useless.

Only if both min2, min3 ≥ Z will the whole right subtree have
an effect on the highest maximizer, but in this case the exact
value of min1 is not needed, just the information that it is ≤ Z.
Clearly in both cases, V11, V12 are not needed since an exact
value of min1 is not needed.

We will also take the time to note that if V9 ≥ Z we do have
to continue the exploring as V10 could be even greater and the
final value of the top maximizer, so V10 can’t really be pruned.

Part d (pruning V14, V15, V16 ):
Continuing from part c, if we find thatmin1 ≤ Z andmin2 ≤ Z
we can stop.

We can realize this as soon we explore V13. Once we figure
this out, we know that our median node’s value must be one of
these two values, and neither will replace Z so we can stop.
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Q2. Games
Alice is playing a two-player game with Bob, in which they move alternately. Alice is a maximizer. Although Bob is also
a maximizer, Alice believes Bob is a minimizer with probability 0.5, and a maximizer with probability 0.5. Bob is aware of
Alice’s assumption.
In the game tree below, square nodes are the outcomes, triangular nodes are Alice’s moves, and round nodes are Bob’s moves.
Each node for Alice/Bob contains a tuple, the left value being Alice’s expectation of the outcome, and the right value being
Bob’s expectation of the outcome.
Tie-breaking: choose the left branch.
The left values are Alice’s expectations, and are the only thing Alice can refer to when making decisions.
The right values are Bob’s expectations, and they also accurately track the expected outcome of the game according to each
choice of branching (regardless of it is Alice’s or Bob’s decision, since Bob has all the information). Hence the right values are
accurate information about the game, and would be what Bob looks at when making his decisions. However, when it is Alice’s
turn to make decisions, Bob will think about how Alice would maximize the outcome w.r.t to what she believes, and he will
update his expectations accordingly.

(a) In the blanks below, fill in the tuple values for tuples (Ba, Bb) and (Ea, Eb) from the above game tree.

(Ba, Bb) = ( 5 , 9 )

(Ea, Eb) = ( 7 , 13 )

For a square node, its value v means the same to Alice and Bob, i.e., we can think of it as a tuple (v,v).

The left value of Alice’s nodes is the maximum of the left values of it’s children nodes, since Alice believes that the values
of the nodes are given by left values, and it’s her turn of action, so she will choose the largest value.
The right value of Alice’s nodes is the right value from the child node that attains the maximum left value since Bob’s
expectation is consistent with how Alice will act.
So for a triangular node, its tuple is the same as its child that has the maximum left value.

The left value of Bob’s nodes is the average of the maximum and minimum of the left values of it’s children nodes since
Alice believes Bob is 50% possible to be adversarial and 50% possible to be friendly.
The right value of Bob’s nodes is the maximum of the right values of the immediate children nodes since Bob would
choose the branch that gives the maximum outcome during his turn.
So for a round node, left = 0.5(max(children.left) + min(children.left)), and right = max(children.right).

(b) In this part, we will determine the values for tuple (Da, Db).
(i) Da = # 8 # X # 8+X  4+0.5X # min(8,X) # max(8,X)

(ii) Db = # 8 # X # 8+X # 4+0.5X # min(8,X)  max(8,X)
It’s a round node, so left = 0.5(max(children.left) + min(children.left)), and right = max(children.right).
Its children: (8,8) and (X,X). So left = 0.5(8+X) = 4+0.5X, and right = max(8, X).
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(The graph of the tree is copied for your convenience. You may do problem e on this graph. )

(c) Fill in the values for tuple (Ca, Cb) below. For the bounds of X, you may write scalars, ∞ or −∞.
If your answer contains a fraction, please write down the corresponding simplified decimal value in its place. (i.e., 4
instead of 8

2 , and 0.5 instead of
1
2 ).

1. If −∞ < X < 6 , (Ca, Cb) = ( 7 , 13 )

2. Else, (Ca, Cb) = ( 4+0.5X , max( 8 , X ) )

It’s a triangular node, so its tuple is the same as its child that has the maximum left value.
Its children: (4+0.5X, max(8,X)) and (7, 13).
So if 4+0.5X < 7, i.e. −∞ < X < 6, it’s the same as child node (7, 13), and otherwise it’s (4+0.5X, max(8,X)).

(d) Fill in the values for tuple (Aa, Ab) below. For the bounds of X, you may write scalars, ∞ or −∞.
If your answer contains a fraction, please write down the corresponding simplified decimal value in its place. (i.e., 4
instead of 8

2 , and 0.5 instead of
1
2 ).

1. If −∞ < X < 6 , (Aa, Ab) = ( 6 , 13 )

2. Else, (Aa, Ab) = ( 4.5+0.25X , max( 9 , X ) )

It’s a round node, so left = 0.5(max(children.left) + min(children.left)), and right = max(children.right).
Its children: (5,9) and node "Part (c)".
If −∞ < X < 6, these children are (5,9) and (7, 13).
left = 0.5(max(children.left) + min(children.left)) = 0.5(5+7) = 6
right = max(children.right) = max(9, 13) = 13.
Otherwise (6 < X < +∞), these children are (5,9) and (4+0.5X, max(8,X)).
left = 0.5(max(children.left) + min(children.left)) = 0.5(5+4+0.5X) = 4.5 + 0.25X
right = max(children.right) = max(9, max(8,X)) = max(9,X).

(e) When Alice computes the left values in the tree, some branches can be pruned and do not need to be explored. In the
game tree graph on this page, put an ’X’ on these branches. If no branches can be pruned, mark the "Not possible" choice
below.
Assume that the children of a node are visited in left-to-right order and that you should not prune on equality.

 Not possible
It’s impossible to determine the average of min and max until all children nodes are seen, so no pruning can be done for
Alice. Leaving "Not possible" unmarked and no ’X’ found in the graph is interpreted as ’no conclusion’ and will not be
given credit.
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