Linear Algebra for Machine
Learning

Sargur N. Srihari
srihari@cedar.buffalo.edu

Srihari



Machine Learning Srihari

What is linear algebra®

 Linear algebra is the branch of mathematics
concerning linear equations such as

— In vector notation we say a'z=1b
— Called a linear transformation of «

* Linear algebra is fundamental to geometry, for
defining objects such as lines, planes, rotations

Linear equation a,z;+.....+a,2,=b
defines a plane in (z,,..,z,,) space
Straight lines define common solutions
to equations
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Why do we need to know it?

* Linear Algebra is used throughout engineering

— Because it is based on continuous math rather than
discrete math

« Computer scientists have little experience with it

» Essential for understanding ML algorithms

— E.g., We convert input vectors (z,,..,z,) into outputs
by a series of linear transformations

* Here we discuss:
— Concepts of linear algebra needed for ML
— Omit other aspects of linear algebra
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Linear Algebra Topics
— Scalars, Vectors, Matrices and Tensors
— Multiplying Matrices and Vectors
— ldentity and Inverse Matrices
— Linear Dependence and Span
— Norms
— Special kinds of matrices and vectors
— Eigendecomposition
— Singular value decomposition
— The Moore Penrose pseudoinverse
— The trace operator
— The determinant
— EX: principal components analysis 4
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Scalar

* Single number

— In contrast to other objects in linear algebra,
which are usually arrays of numbers

* Represented in lower-case italic x

— They can be real-valued or be integers
* E.g., let xR be the slope of the line
— Defining a real-valued scalar

* E.g., letneN be the number of units
— Defining a natural number scalar
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Vector

* An array of numbers arranged in order
« Each no. identified by an index

* Written in lower-case bold such as =
— its elements are in italics lower case, subscripted

Ly

e |f each elementisin Rthen z isin R»

* We can think of vectors as points in space
— Each element gives coordinate along an axis




Machine Learning Srihari

Matrices

e 2-D array of numbers
— S0 each element identified by two indices

* Denoted by bold typeface A

— Elements indicated by name in italic but not bold

e A, is the top left entry and A, ,is the bottom right entry

* We can identify nos in vertical column j by writing : for the
horizontal coordinate

o E.g., |:A11 A, ]
A= , ,

A A

2,1 2,2

o A, is ™ rowof A, A ;is j column of A

* If A has shape of height m and width n with
real-values then AeR™
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Tensor

« Sometimes need an array with more than two
axes

— E.g., an RGB color image has three axes

* A tensoris an array of numbers arranged on a
regular grid with variable number of axes

— See figure next
* Denote a tensor with this bold typeface: A

» Element (4,5,k) of tensor denoted by A. .

1,5,k
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Shapes of Tensors

3d-tensor

2d-tensor

1d-tensor

6d-tensor

5d-tensor

4d-tensor
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Transpose of a Matrix

* An important operation on matrices
* The transpose of a matrix A is denoted as A"
* Defined as
(AY); =4,
— The mirror image across a diagonal line

 Called the main diagonal , running down to the right
starting from upper left corner

A1,1 A1,2 A1,3 Al 1 Az 1 A3,1 AN ~ ~\>\Ij;i Al 1 A2,1 A3,1
_ T _ |- T _
A= A2,1 Az,z A2,3 =A = A1,2 Az,z A3,2 A= A2,1 \ =4 = A1,2 Az,z A3,2

A3,1 A3 2 A3,3 Al 3 AZ 3 A3,3 A3,1 A3,2

10
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Vectors as special case of matrix

* Vectors are matrices with a single column

» Often written in-line using transpose

r=|z,..2|"

A scalar is a matrix with one element

a=al

11
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Matrix Addition

* We can add matrices to each other if they have
the same shape, by adding corresponding
elements

— If A and B have same shape (height m, width n)
C:A+B:>Cw‘ :Ai,j+Bi,j

* A scalar can be added to a matrix or multiplied
by a SCaIar D:aB+c:DZ_J:a,BZ,’j+c
 |Less conventional notation used in ML:

— Vector added to matrix c=4+=c, =4 +b
 Called broadcasting since vector b added to each row of A

12



Multiplying Matrices

* For product c=4aBto be defined, 4 has to have
the same no. of columns as the no. of rows of B

— If A is of shape mxn and B is of shape nxp then
matrix product C is of shape mxp

C=AB=C, = ;A@kBk;j

— Note that the standard product of two matrices is
not just the product of two individual elements

* Such a product does exist and is called the element-wise
product or the Hadamard product A®B

13



Multiplying Vectors

* Dot product between two vectors x and y of
same dimensionality is the matrix product 'y

* We can think of matrix product C=AB as
computing C,; the dot product of row i of A and

column j of B

14



Matrix Product Properties

» Distributivity over addition: A(B+C)=AB+AC

» Associativity: A(BC)=(AB)C

 Not commutative: AB=BA is not always true

* Dot product between vectors is commutative:
rly=y'x

» Transpose of a matrix product has a simple
form: (AB)'=B'A!

15
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Example flow of tensors in ML

A linear classifier y= Wx'+b

Srihari

Vector x is converted
into vector y by

multiplying « by a matrix W

stretch pixels into single column

input image

!
02 |-05]| 0.1 | 20 56 1.1 -96.8 | cat score
15 43 |24 [ og 231 | 4 (S - RO ., ocore
0 |025|02]-03 24 -1.2 61.95 | ship score
w 2 b f(zi; W,b)
Z;

A linear classifier with bias eliminated y= Wx!

02 |-05]| 01|20 56 1.1
15 | 43 |21 |s00 231 | 4 | 32
0 [025(02|-03 24 =)
w 2 b
Z;

0.2

05|01 |20 | 1.1 56

15| 13 | 21 |00 | 3.2 || 231

0 [025]02[-03|-12]|] 24
w b 2

new, single W
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Linear Transformation

o Axr=>b
—where AeR™ and beR"
— MOFG eXpllCItly Ax +A4 x +....+A1nxn=b]

111 12772

- n equations in
A,x +4 x,+..+4 x =b, n unknowns

Anlx[ +Am2x2 +....+An’nxn an

b, Can view A as a linear transformation
of vector x to vector b

nxXn nXl1 n X1

» Sometimes we wish to solve for the unknowns
x ={z,..,z,} when A and b provide constraints

17
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ldentity and Inverse Matrices

* Matrix inversion is a powerful tool to analytically
solve Ax=b

* Needs concept of Identity matrix
* |dentity matrix does not change value of vector

when we multiply the vector by identity matrix

— Denote identity matrix that preserves n-dimensional
vectors as I,

—Formally 1 er™ and  vxeR"Ix=x
— Example of I, [

o O

0 0
1 0
01

18



Matrix Inverse

* Inverse of square matrix A defined as  474=1

 \We can now solve Ax=b as follows:
Ax=Db
AtAx=A"b
Insz_lb
x=A"b

* This depends on being able to find 4!
 |[f A exists there are several methods for
finding it

19
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Solving Simultaneous equations

e Ax =0
where 4 is (M+1) x (M+1)
xis (M+1) x 1: set of weights to be determined
bis Nx1

Srihari
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wrerExample: System of Linear ™™
Equations in Linear Regression

* Instead of Ax=>b

e \We have [ow=t

—where @ is m X n design matrix of m features for n
samples z;, j=1,..n

— w IS weight vector of m values
— tis target values of sample, t=|t,,..t |

— We need weight w to be used with m features to
determine output

y(a:,w)=2wixi
i=1

21
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Closed-form solutions

« Two closed-form solutions
1.Matrix inversion £=A"1b
2.Gaussian elimination

Srihari
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Linear Equations: Closed-Form Solutions

1121 + ATy +-- -+ Ay = by

1. Matrix Formulation: Az—b A1 T1 + Aoy + -+ dgnZy = by
Solution: z=A"1b

A1 T1 + Q22 + -+ Qun Ty = b-m

;. a1 -+ Qn Xy b1
1 A2 -+ d2n ) bz
. . . a a e €T b
2. Gaussian Elimination |“ml Hm2 mn [ | Vm |
followed by back-substitution

3+ 5y +6z2=T| [r 3 o5 1 3 -2| 5 3-2 3 2| 5
20 + 4y + 32=28 35 6|7|~]|0 -4 12|81~ 0 4 12 —8 1 -3| 2
2 4 318 |2 4 3| 8 0 -2 T|-2 0_2 )

(1 3 —215 13 =2|5 13 0]9 10 0|15

~l01 =3/2|~l01 o0]8 010/8|~]010]| 8

(00 12 00 12 00 1|2 00 1| 2
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Disadvantage of closed-form solutions

 |f A-! exists, the same A can be used for any
given b

— But A-! cannot be represented with sufficient
precision

— It Is not used in practice

» Gaussian elimination also has disadvantages
— numerical instability (division by small no.)
— O(n?) for n.x n matrix

» Software solutions use value of b in finding =

— E.q., difference (derivative) between b and output is
used iteratively 2
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How many solutions for Az=>b exist?

Ax +A4 x +....+A]nxn=b1

« System of equations with S
— n variables and m equations is:

e Solutionis z=A1b

* |In order for A-1to exist Ax=b must have
exactly one solution for every value of b

— It is also possible for the system of equations to
have no solutions or an infinite no. of solutions for
some values of b

* |t is not possible to have more than one but fewer than
infinitely many solutions

— If £ and y are solutions then z=a x+ (I-a) y Is a
solution for any real a 25

Amlxl +Am2x2 +....+Amnxn =bm
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Span of a set of vectors

* Span of a set of vectors: set of points obtained
by a linear combination of those vectors

— A linear combination of vectors {vV,.., v(®} with
coefficients c;is |Y.co”
— System of equatiolns s Ax=b
* A column of A4, i.e., A specifies travel in direction :
* How much we need to travel is given by z,
* This is a linear combination of vectors Am:inA,,i

— Thus determining whether Axz=b has a solufion is

equivalent to determining whether b is in the span of
columns of 4

* This span is referred to as column space or range of A
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Conditions for a solution to Axz=b

* Matrix must be square, i.e., m=n and all
columns must be linearly independent

— Necessary condition is n=m

* For a solution to exist when 4e R™" we require the
column space be all of R”
— Sufficient Condition

* If columns are linear combinations of other columns,
column space is less than R"
— Columns are linearly dependent or matrix is singular

e For column space to encompass R"™ at least one set
of m linearly independent columns

* For non-square and singular matrices
— Methods other than matrix inversion are used
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Use of a Vector in Regression

* A design matrix
— N samples, D features

# hours # hours # classes Grade
studied playing games _missed
Student #1 10 3 0 * 87
Student #2 8 20 2 75
Student #3 5 1 5 63

|

 Feature vector has three dimensions

* This is a regression problem

28
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Norms

« Used for measuring the size of a vector
 Norms map vectors to non-negative values

* Norm of vector z = [z,,..,z,|T IS distance from
origin to =
— It is any function f that satisfies:
f(w):O:m’:O
f(a:+y)_<f(a:)+f(y) Triangle Inequality
VaeR f(am):‘a‘f(a:)

29



Machine Learning

Srih

ari

LY Norm
e Definition:

el ~( S|

D~

]

— L2 Norm
» Called Euclidean norm

— Simply the Euclidean distance
between the origin and the point x
— written simply as ||z||
— Squared Euclidean norm is same as z'x

— I Norm

V22122 =8 =22

y |

« Useful when 0 and non-zero have to be distinguished
— Note that L? increases slowly near origin, e.g., 0.1°=0.01)

— > Norm Hm“w:maaz‘xi‘

7

e Called max norm

30
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Use of norm in Regression

* Linear Regression
z: a vector, w: weight vector| T

y(x,w) = wytw,x+.Fw; ;= wle

With nonlinear basis functions ¢, | .
M-1 "o 5
y(mw) = w, + 3w () /\J
j=1

 Loss Function

[ 1 - 2 2‘ 2
B(w) =3 {ylw,w)-t, )+ || w' |
n=1

Second term is a weighted norm
called a regularizer (to prevent overfitting) 31
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L* Norm and Distance
 Norm is the length of a vector [ =

" 1 Calculate the norm
L Iv=y a7y
o 1 For example,
ash | N=<4,-3>
]| | v =V#RFE=s
15} { Then divid by the norm to
ma

evector
ke the unit vector

* We can use it to draw a unit circle from origin
— Different P values yield different shapes | [~
* Euclidean norm yields a circle

7\
N

* Distance between two vectors (v, w)
— dist(v,w)=||v-w||

— \/(vl —w ) +.+v —w )

Distance to origin would just be sqrt of sum of squares 32
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Size of a Matrix: Frobenius Norm
e Similar to L2 norm n [M); O—"A M/)

1,
o J %
9 1 | |lal=va+1+25+.+1 =16 >
11 I —

V matrix W matrix
/ \ @ 1/

Frobenius in ML et N o

le(1+1) X V(I+1)><J:netj
— Layers of neural network h—fluet)  fo)=1/(1+e)
iInvolve matrix multiplication

w O N

i o
— Regularization: | g il
» minimize Frobenius of weight oo N wf) -
. NN ; - output nod
matrices || W(q)|| over L layers 0
L _ (h)
=140
i=1
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Angle between Vectors

* Dot product of two vectors can be written In
terms of their L? norms and angle 8 between

them

2"y =], |y]], cos 0

 Cosine between two vectors is a measure of

their similarity YN dist (A, B)
iAiBi /
similarity = cos(#) = A-B = = -r-° ---"B
ATIBT AT 7 cos 6
S Va f/ \
/7

/ X

34
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Special kind of Matrix: Diagonal

* Diagonal Matrix has mostly zeros, with non-
zero entries only in diagonal

— E.q., identity matrix. where all diagonal entries are 1

1700
010
0 01

— E.g., covariance matrix with independent features

[ — 3
Cov(X,Y)=oxy =E[(X —px)(Y ~my)] | ¢? 0 ... 0 :
Covorionce =2(X5_X°@(\/i_\/m\) 0 O‘% .0 124
n-1 2 .
. +0A.57 : : : .
Covarionce = S .
0 0 .. o =3
Covarionce = [- 807 5 i _3

Nx ) = ——— p{——(x— p)'E (- u)}

If Cov(X,Y)=0 then E(XY)=E(X)E(Y) e [
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Efficiency of Diagonal Matrix

e diag (v) denotes a square diagonal matrix with
diagonal elements given by entries of vector v

* Multiplying vector x by a diagonal matrix is
efficient

— To compute diag(v)x we only need to scale each z,

by v, diag(v)r=v0x

* Inverting a square diagonal matrix is efficient

— Inverse exists iff every diagonal entry is nonzero, in
which case diag (v)'=diag ([1/v,,..,1/v,]1)
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Special kind of Matrix: Symmetric

» A symmetric matrix equals its transpose: A=A"
— E.g., a distance matrix is symmetric with A=A,

a|b|c|d|e | f a bcdef
a0 184 222 | 177 | 216 | 231 a
b 184 0 45 123 | 128 | 200 b
C
c 222 45 0 129 121 | 203
= = g
o @ d 177|123 129 0 46 | 83
@ e 216 128 | 121 46 |0 83 €
f 231 200 203 83 (83 |0 f =
Raw data Graphical View
— E.g., covariance matrices are symmetric
{1 5 .15 15 0 u\

O 1 15 15 0 0

A5 15

—

2 0 0

A5 15 25 1 LU

o o 0 0 1 .10

\(] o o 0 .10 1 )




Machine Learning Srihari

Special Kinds of Vectors

o Unit Vector
— A vector with unit norm H“J" ‘2:1

* Orthogonal Vectors

— A vector x and a vector y are
orthogonal to each other if x'y=0

* If vectors have nonzero norm, vectors at
90 degrees to each other
— Orthonormal Vectors
 Vectors are orthogonal & have unit norm
« Orthogonal Matrix

— A square matrix whose rows are mutually

orthonormal: A*A=AA"=] Orthogonal matrices are of
— Al=AT interest because their inverse is
very cheap to compute
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Matrix decomposition

* Matrices can be decomposed into factors to
learn universal properties, just like integers:

— Properties not discernible from their representation

1.Decomposition of integer into prime factors

* From 12=2 X 2 X 3 we can discern that
— 12 is not divisible by 5 or

— any multiple of 12 is divisible by 3
— But representations of 12 in binary or decimal are different

2.Decomposition of Matrix A as A=Vdiag(X) V!

* where V'is formed of eigenvectors and A are eigenvalues,
e.q,

has eigenvalues A=1 and A=3 and eigenvectors V. |, -
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Eigenvector

* An eigenvector of a square matrix
A Is a non-zero vector v such that

multiplication by A only changes
the scale of v |
Av=\v :
— The scalar A is known as eigenvalue Maomanctsbystitchmgmixvecmf‘a
» If vis an eigenvector of A, SO IS  demewrain
any rescaled vector sv. Moreover Hidpeds

sv slill has the same eigen value.
Thus look for a unit eigenvector

40
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Eigenvalue and Characteristic Polynomial

A, L A, v w,
* Consider Av=w A[ W o4 [M} ‘”{f‘j

* |f v and w are scalar muItip_ es, l.e., If Av=\v

 then v is an eigenvector of the linear transformation A
and the scale factor A is the eigenvalue corresponding
to the eigen vector

* This is the eigenvalue equation of matrix 4
— Stated equivalently as (A-Al)v=0

— This has a non-zero solution if [4-AI|=0 as
* The polynomial of degree n can be factored as

AM] = A -D)Ag-h) ... (M, -1)

* The A, A,...A, are roots of the polynomial and are
eigenvalues of 4
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Example of Eigenvalue/Eigenvector

* Consider the matrix A:- 2> 1
1 2

 Taking determinant of (A-AI), the char poly is

2—A 1
1 2— A\

* |t has roots A=1 and A=3 which are the two
eigenvalues of A

* The eigenvectors are found by solving for v in
Av=kv, which are

A=\ |= = 3— 4N+ N’

U =

42



Eigendecomposition

* Suppose that matrix A has n linearly
independent eigenvectors {vV,.., v} with
eigenvalues {A,,..,A }

« Concatenate eigenvectors to form matrix V

« Concatenate eigenvalues to form vector
A=[Ay,. 0 ]

* Eigendecomposition of A is given by
A=Vdiag(A) V!

Srihari
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Decomposition of Symmetric Matrix

* Every real symmetric matrix A can be
decomposed into real-valued eigenvectors and
eigenvalues

A=QAQ"
where Q is an orthogonal matrix composed of
eigenvectors of A: {v),.., 0™}
orthogonal matrix: components are orthogonal or v()Tyl)=0
A Is a diagonal matrix of eigenvalues {A,,..,.A }

* We can think of A as scaling space by A, in
direction (%
— See figure on next slide "
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Effect of Eigenvectors and Eigenvalues

« Example of 2 X2 matrix

« Matrix A with two orthonormal eigenvectors
— o) with eigenvalue A, v with eigenvalue A,

Plot of unit vectors ueR?

(circle)
3 . Befo're mqltipli?atior}
2+
1F ey
- ol
2
—1f
—9f
92

| with two variables z; and z,

Plot of vectors Au
(ellipse)

After multiplication

A v(l_

_3 I I " 1 1
) -3 -2 -1 0 1 2 3
zI

45
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Eigendecomposition is not unique

* Eigendecomposition is A=QA QT
— where (@) is an orthogonal matrix composed of
eigenvectors of A

* Decomposition is not unique when two
eigenvalues are the same

* By convention order entries of A in descending
order:

— Under this convention, eigendecomposition is
unique if all eigenvalues are unique

46
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What does eigendecomposition tell us?

» Tells us useful facts about the matrix:
1. Matrix is singular if & only if any eigenvalue is zero
2. Useful to optimize quadratic expressions of form

fle)==x! Ax subject to ||z||,=1

Whenever x is equal to an eigenvector, fis equal to the
corresponding eigenvalue

Maximum value of f is max eigen value, minimum value is
min eigen value

Example of such a quadratic form appears in multivariate
Gaussian

exX
(27_(_)D/2 | Z |1/2 P 2

Nx|ps) = — 1 1—1<x—u>T21<x—u>}

47
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Positive Definite Matrix

* A matrix whose eigenvalues are all positive is
called positive definite

— Positive or zero is called positive semidefinite

If eigen values are all negative it is negative
definite

— Positive definite matrices guarantee that zZAz > 0

48
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Singular Value Decomposition (SVD)

» Eigendecomposition has form: A=Vdiag(h) V!

— If 4 i1s not square, eigendecomposition is undefined
 SVD is a decomposition of the form A=UDV7T
« SVD is more general than eigendecomposition

— Used with any matrix rather than symmetric ones

— Every real matrix has a SVD
« Same is not true of eigen decomposition
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SVD Definition

* Write A as a product of 3 matrices: A=UDVT
—IfAismXn, then Uis mXm, DismXn, VisnXn

* Each of these matrices have a special structure

e Uand V are orthogonal matrices

e D is a diagonal matrix not necessarily square
— Elements of Diagonal of D are called singular values of A
— Columns of U are called left singular vectors
— Columns of V" are called right singular vectors

* SVD interpreted in terms of eigendecomposition
* Left singular vectors of A are eigenvectors of AAT
 Right singular vectors of 4 are eigenvectors of AT A

* Nonzero singular values of A are square roots of eigen
values of ATA. Same is true of AA"
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Use of SVD in ML

1. SVD is used in generalizing matrix inversion
— Moore-Penrose inverse (discussed next)

2. Used in Recommendation systems

— Collaborative filtering (CF)

Method to predict a rating for a user-item pair based on the
history of ratings given by the user and given to the item

Most CF algorithms are based on user-item rating matrix
where each row represents a user, each column an item
— Entries of this matrix are ratings given by users to items

SVD reduces no.of features of a data set by reducing space

dimensions from Nto K where K < N .
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SVD In Collaborative Filtering

ro29 ...

T11
Z21
Tm1

g e
3 5
N—
RS
R
[

o Wn
\—/
—

Vin
Urn

e X is the utility matrix
— X;;denotes how user i likes item j
— CF fills blank (cell) in utility matrix that has no entry

« Scalablility and sparsity is handled using SVD

— SVD decreases dimension of utility matrix by
extracting its latent factors

 Map each user and item into latent space of dimension r

52
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Moore-Penrose Pseudoinverse

* Most useful feature of SVD is that it can be
used to generalize matrix inversion to non-
square matrices

* Practical algorithms for computing the
pseudoinverse of A are based on SVD
A+=VD+UT
—where U,D,V are the SVD of 4

* Pseudoinverse D7 of D is obtained by taking the
reciprocal of its nonzero elements when taking transpose
of resulting matrix

53



* Trace operator gives the sum of the elements

Trace of a Matrix

along the diagonal

Tr(A)=) A,

Srihari

* Frobenius norm of a matrix can be represented

asS

1
2

Al =(Tr(a)

54



Determinant of a Matrix

« Determinant of a square matrix det(A) is a
mapping to a scalar

* |t is equal to the product of all eigenvalues of
the matrix

* Measures how much multiplication by the
matrix expands or contracts space

Srihari
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Example: PCA

* A simple ML algorithm is Principal Components
Analysis

* |t can be derived using only knowledge of basic
linear algebra

56
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PCA Problem Statement

» Given a collection of m points {z,..,z™} in
R"™ represent them in a lower dimension.
— For each point (9 find a code vector ¢? in R!

— If [ is smaller than # it will take less memory to
store the points

— This is lossy compression

— Find encoding function f () = ¢ and a decoding
functionx =~ g ( f(x) )

57
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PCA using Matrix multiplication

* One choice of decoding function is to use
matrix multiplication: g(¢) =Dec where  per™

— D is a matrix with / columns

* To keep encoding easy, we require columns of
D to be orthogonal to each other

— To constrain solutions we require columns of D to
have unit norm

* We need to find optimal code ¢* given D
 Then we need optimal D

58



Finding optimal code given D

* To generate optimal code point ¢* given input
z, minimize the distance between input point x
and its reconstruction g(c¢*)

c*=arg min‘ ‘x — g(c)‘ L

— Using squared L? instead of L?, function being
minimized is equivalent to

(x—g(c)) (x—g(c))
» Using ¢g(c)=Dc optimal code can be shown to
be equivalent to «_argmin—2x"De +e7e
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Optimal Encoding for PCA

» Using vector calculus V(-2x"Dete'e)=0
—2D"x+2c=0

c=D"x
 Thus we can encode x using a matrix-vector
operation

— To encode we use fle)=D'x

— For PCA reconstruction, since ¢g(¢)=Dc we use
r(z)=g(fz))=DD"x
— Next we need to choose the encoding matrix D

60
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Method for finding optimal D

Srihari

» Reuvisit idea of minimizing L’ distance between

Inputs and reconstructions
— But cannot consider points in isolation

— S0 minimize error over all points: Frobenius norm

1

D*= argmin(Z(xﬁ") —~ r(x(i)) .)2 T
D > j

* subject to DTD=I, -
* Use design matrix X, xeRrR™

— Given by stacking all vectors describing the points

* To derive algorithm for finding D* start by

considering the case [ =1
— In this case D is just a single vector d

61
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Final Solution to PCA

* For [ =1, the optimization problem is solved
using eigendecomposition
— Specifically the optimal d is given by the
eigenvector of XX corresponding to the largest
eigenvalue
* More generally, matrix D is given by the |
eigenvectors of X corresponding to the largest
eigenvalues (Proof by induction)
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