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Topics in Probability  and Information Theory 
•  Overview 
1.  Why Probability? 
2.  Random Variables 
3.  Probability Distributions 
4.  Marginal Probability 
5.  Conditional Probability 
6.  The Chain Rule of Conditional Probabilities 
7.  Independence and Conditional Independence 
8.  Expectation, Variance and Covariance 
9.  Common Probability Distributions 
10.  Useful Properties of Common Functions 
11.  Bayes Rule 
12.  Technical Details of Continuous Variables 
13.  Information Theory 

14.  Structured Probabilistic Models 
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Probability Theory and Information Theory 

•  Probability Theory 
– A mathematical framework for representing 

uncertain statements 
– Provides a means of quantifying uncertainty and 

axioms for deriving new uncertain statements 
•  Use of probability theory in artificial intelligence 

1. Tells us how AI systems should reason 
•  So we design algorithms to compute or approximate 

various expressions using probability theory 
2. Theoretically analyze behavior of AI systems 3 



Deep Learning                                                                                            Srihari 

Why Probability? 

•  Much of CS deals with entities that are certain 
– CPU executes flawlessly 

•  Errors do occur but design need not be concerned 

– CS and software engineers work in clean and 
certain environment 

– Surprising that ML heavily uses probability theory 
•  Reasons for ML use of probability theory 

– Must always deal with uncertain quantities 
•  Also with non-deterministic (stochastic) quantities 

– Many sources for uncertainty and stochasticity 4 
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Sources of Uncertainty 

•  Need ability to reason with uncertainty 
– Beyond math statements true by definition, hardly 

any propositions are guaranteed 
•  Three sources of uncertainty 

1. Inherent stochasticity of system being modeled 
•  Subatomic particles are probabilistic 
•  Cards shuffled in random order 

2. Incomplete observability 
•  Deterministic systems appear stochastic when all 

variables are unobserved 
3. Incomplete modeling 

•  Discarded information results in uncertain predictions 
5 
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Practical to use uncertain rule 

•  Simple rule “Most birds fly” is cheap to 
develop and broadly useful 

•  Rules of the form “Birds fly, except for very 
young birds that have not learned to fly, sick or 
injured birds that have lost ability to fly, 
flightless species of birds…” are expensive to 
develop, maintain and communicate 
– Also still brittle and prone to failure 
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Can probability theory provide tools? 

•  Probability theory was originally developed to 
analyze frequencies of events 
– Such as drawing a hand of cards in poker 
– These events are repeatable 

•  If we repeated experiment infinitely many times, 
proportion of p of outcomes would result in that outcome 

•  Is it applicable to propositions not repeatable? 
– Patient has 40% chance of flu  

•  Cannot make infinite replicas of the patient 
– We use probability to represent degree of belief 

•  Former is frequentist probability, latter Bayesian 
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Logic and Probability 

•  Reasoning about uncertainty behaves the same 
way as frequentist probabilities 

•  Probability is an extension of logic to deal with 
uncertainty 

•  Logic provides rules for determining what 
propositions are implied to be true or false 

•  Probability theory provides rules for determining 
the likelihood of a proposition being true given 
the likelihood of other propositions 
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•  Variable that can take different values randomly 
•  Scalar random variable denoted x 
•  Vector random variable is denoted in bold as  x 
•  Values of r.v.s denoted in italics x or x 

– Values denoted as Val(x)={x1,x2} 

•  Random variable must has a probability 
distribution to specify how likely the states are 

•  Random variables can be discrete or continuous 
–  Discrete values need not be integers, can be named states 
–  Continuous random variable is associated with a real value 

9 
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Probability Distributions 

•  A probability distribution is a description of how 
likely a random variable or a set of random 
variables is to take each of its possible states 

•  The way to describe the distribution depends 
on whether it is discrete or continuous 

10 
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Discrete Variables and PMFs 

•  The probability distribution over discrete 
variables is given by a probability mass function 

•  PMFs of variables are denoted by P and 
inferred from their argument, e.g., P(x), P(y) 

•  They can act on many variables and is known 
as a joint distribution, written as P(x,y) 

•  To be a PMF it must satisfy: 
1.  Domain of P is the set of all possible states of x 
2.                                      It is not necessary for P(x)≤1 

3.  Normalization 
11 
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Continuous Variables and PDFs 

•  When working with continuous variables, we 
describe probability distributions using 
probability density functions 

•  To be a pdf p must satisfy: 

12 
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Marginal Probability 

•  Sometimes we know the joint distribution of 
several variables 

•  And we want to know the distribution over some 
of them 

•  It can be computed using 

13 
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Conditional Probability 

•  We are often interested in the probability of an 
event given that some other event has 
happened 

•  This is called conditional probability 
•  It can be computed using 
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Chain Rule of Conditional Probability 

•  Any probability distribution over many variables 
can be decomposed into conditional 
distributions over only one variable 

•  An example with three variables 
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Independence & Conditional Independence 

•  Independence: 
– Two variables x and y are independent if their 

probability distribution can be expressed as a 
product of two factors, one involving only x and the 
other involving only y 

•  Conditional Independence: 
– Two variables x and y are independent given 

variable z, if the conditional probability distribution 
over x and y factorizes in this way for every z 
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Expectation 

•  Expectation or expected value of f(x) wrt P(x) 
is the average or mean value that f  takes on 
when x is drawn from P 

•  For discrete variables 

•  For continuous variables 

17 



Deep Learning                                                                                            Srihari 

Variance 

•  Variance gives a measure of how much the 
values of a function of a random variable x vary 
as we sample x from a probability distribution 

•  When the variance is low, values of f(x) cluster 
around its expected value 

•  The square root of the variance is known as the 
standard deviation 

18 
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•  Covariance measures how two values are 

linearly related, as well as scale of  variables 

– High absolute values of covariance: 
•  Values change very much & are both far from their mean 

–  If sign is positive 
•  Both variables take relatively high values far from mean 

–  If sign is negative 
•  One var. takes on high values & another takes low values 

•  Correlation normalizes each variable 
– Measures only how variables are related 

•  Not affected by scale of variables 
19 
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Independence stronger than covariance 
•  Covariance & independence are related but not 

same 
•  Zero covariance is necessary for independence 

–  Independent  variables have zero covariance 
– Variables with non-zero covariance are dependent 

•  Independence is a stronger requirement 
– They not only must not have linear relationship 

(zero covariance) 
– They must not have nonlinear relationship either 

20 
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Ex: Dependence with zero covariance 
•  Suppose we sample real number x from U[-1,1] 
•  Next sample a random variable s  

– with prob ½ we choose s =1 otherwise s = -1  
•  Generate random variable y  assigning y = sx 

–  i.e., y=-x or y=x depending on s 
– Clearly x and y are not independent 

•  Because x completely determines magnitude of y 

•  However Cov(x,y)=0 
– Because when x has a high value y can be high or 

low depending on s 21 
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Common Probability Distributions 

•  Several simple probability distributions are 
useful in may contexts in machine learning 
– Bernoulli over a single binary random variable 
– Multinoulli distribution over a variable with k states 
– Gaussian distribution 
– Mixture distribution 

22 
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Bernoulli Distribution 

•  Distribution over a single binary random 
variable 

•  It is controlled by a single parameter 
– Which gives the probability a random variable being 

equal to 1 

•  It has the following properties 

23 
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Multinoulli Distribution 

•  Distribution over a single discrete variable with 
k different states with k finite 

•  It is parameterized by a vector 
– where pi is the probability of the ith state 
– The final kth state’s probability is given by 
– We must constrain 

•  Multinoullis refer to distributions over categories 
–   So we don’t assume state 1 has value 1, etc. 

•  For this reason we do not usually need to compute the 
expectation or variance of multinoulli variables 

24 
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•  Most commonly used distribution over real 
numbers is the Gaussian or normal distribution 

 
•  The two parameters 

– Control the normal distribution 
•  Parameter µ gives the coordinate of the central peak 
•  This is also the mean of the distribution 
•  The standard deviation is given by σ and variance by σ2 

•  To evaluate PDF need to square and invert σ. 
•  To evaluate PDF often,  more efficient to use precision or 

inverse variance 

Gaussian Distribution 

25 
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Standard normal distribution 

•  µ= 0, σ =1 

26 
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Justifications for Normal Assumption 

1.  Central Limit Theorem 
– Many distributions we wish to model are truly 

normal 
– Sum of many independent distributions is normal 

•  Can model complicated systems as normal even if 
components have more structured behavior 

2.  Maximum Entropy 
– Of all possible probability distributions with the 

same variance, normal distribution encodes the 
maximum amount of uncertainty over real nos. 

– Thus the normal distributions inserts the least 
amount of prior knowledge into a model 27 
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Normal distribution in Rn 

•  A multivariate normal may be parameterized 
with a positive definite symmetric matrix Σ 

–  µ is a vector-valued mean,Σ is the covariance matrix 
•  If we wish to evaluate the pdf for many different 

values of parameters, inefficient to invert Σ to 
evaluate the pdf. Instead use precision matrix β 

28 
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Exponential and Laplace Distributions 

•  In deep learning we often want a distribution 
with a sharp peak at x=0.  
– Accomplished by exponential 

•  Indicator 1x≥0  assigns probability zero to all negative x 

•  Laplace distribution is closely-related 
–  It allows us to place a sharp peak at arbitrary µ 

29 
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Dirac Distribution 
•  To specify that mass clusters around a single 

point, define pdf using Dirac delta function δ(x): 
p(x) = δ(x - µ) 
•  Dirac delta: zero everywhere except 0, yet integrates to 1 

•  It is not an ordinary function. Called a generalized 
function defined in terms of properties when integrated 

•  By defining p(x) to be δ shifted by –µ we obtain 
an infinitely narrow and infinitely high peak of 
probability mass where x = µ 

•  Common use of Dirac delta distribution is as a 
component of an empirical distribution 30 
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Empirical Distribution 

•  Dirac delta distribution is used to define an 
empirical distribution over continuous variables 

– which puts probability mass 1/m on each of m 
points x(1),..x(m) forming a given dataset 

•  For discrete variables, the situation is simpler 
– Probability associated with each input value is the 

empirical frequency of that value in the training set 
•  Empirical distribution is the probability density 

that maximizes the likelihood of training data 31 



Deep Learning                                                                                            Srihari 
Mixtures of Distributions 

•  A mixture distribution is made up of several 
component distributions 

•  On each trial, the choice of which component 
distribution generates the sample is determined 
by sampling a component identity from a 
multinoulli distribution: 

 
– where P(c) is a multinoulli distribution 

•  Ex: empirical distribution over real-valued 
variables is a mixture distribution with one Dirac 
component for each training example 32 
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Creating richer distributions 
•  Mixture model is a strategy for combining 

distributions to create a richer distribution 
– PGMs allow for more complex distributions 

•  Mixture model has concept of a latent variable 
– A latent variable is a random variable that we 

cannot observe directly 
•  Component identity variable c of the mixture model 

provides an example  
•  Latent vars relate to x through joint P(x,c)=P(x|c)P(c) 

–  P(c) is over latent variables and 
–  P(x|c) relates latent variables to the visible variables 
– Determines shape of the distribution P(x) even though it is 

possible to describe P(x) without reference to latent variable 
33 
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Gaussian Mixture Models 
•  Components p(x|c=i) are Gaussian 
•  Each component has a  separately 

parameterized mean µ(i) and covariance Σ(i) 

•  Any smooth density can be approximated with 
enough components 

•  Samples from a GMM: 
– 3 components 

•  Left: isotropic covariance 
•  Middle: diagonal covariance 

–  Each component controlled 

•  Right: full-rank covariance 
34 
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Useful properties of common functions 
•  Certain functions arise with probability 

distributions used in deep learning 
•  Logistic sigmoid 

– Commonly used to produce the ϕ parameter of a 
Bernoulli distribution because its range is (0,1) 

–  It saturates when x is very small/large 
•  Thus it is insensitive to small changes in input 

35 
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•  It is defined as 

– Softplus is useful for producing the β or σ parameter 
of a normal distribution because its range is (0,∞) 

– Also arises in manipulating sigmoid expressions 
•   Name arises as smoothed version of 

x+=max(0,x) 

36 
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Useful identities 

37 
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Bayes’ Rule 

•  We often know P(y|x) and need to find P(x|y) 
– Ex: in classification, we know P(x|Ci) and need to 

find P(Ci|x) 

•  If we know P(x) then we can get the answer as 

– Although P(y) appears in formula, it can be 
computed as 

•  Thus we don’t need to know P(y) 

•  Bayes’ rule is easily derived from the definition 
of conditional probability 38 


