Classification

e Qualitative variables take values in an unordered set C,
such as:
eye colore {brown,blue,green}
email€ {spam, ham}.

e Given a feature vector X and a qualitative response Y
taking values in the set C, the classification task is to build
a function C'(X) that takes as input the feature vector X
and predicts its value for Y; ie. C'(X) € C.

e Often we are more interested in estimating the probabilities
that X belongs to each category in C.
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Classification

e Qualitative variables take values in an unordered set C,
such as:

eye colore {brown,blue,green}

email€ {spam, ham}.

Given a feature vector X and a qualitative response Y
taking values in the set C, the classification task is to build
a function C'(X) that takes as input the feature vector X
and predicts its value for Y; ie. C'(X) € C.

Often we are more interested in estimating the probabilities
that X belongs to each category in C.
For example, it is more valuable to have an estimate of the

probability that an insurance claim is fraudulent, than a
classification fraudulent or not.



Credit Card Default

Example
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Can we use Linear Regression?
Suppose for the Default classification task that we code

v — 0 if No
1 if Yes.

Can we simply perform a linear regression of Y on X and
classify as Yes if Y > 0.57
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Can we use Linear Regression?
Suppose for the Default classification task that we code

v — 0 if No
1 if Yes.

Can we simply perform a linear regression of Y on X and
classify as Yes if Y > 0.57

e In this case of a binary outcome, linear regression does a
good job as a classifier, and is equivalent to linear
discriminant analysis which we discuss later.

e Since in the population E(Y|X = z) = Pr(Y = 1| X = x),
we might think that regression is perfect for this task.
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Can we use Linear Regression?
Suppose for the Default classification task that we code

0 ifN
v - if No
1 if Yes.
Can we simply perform a linear regression of Y on X and
classify as Yes if Y > 0.57

e In this case of a binary outcome, linear regression does a
good job as a classifier, and is equivalent to linear
discriminant analysis which we discuss later.

e Since in the population E(Y|X = z) = Pr(Y = 1| X = x),
we might think that regression is perfect for this task.

e However, linear regression might produce probabilities less
than zero or bigger than one. Logistic regression is more
appropriate.

3/40



Linear versus Logistic Regression
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The orange marks indicate the response Y, either 0 or 1. Linear
regression does not estimate Pr(Y = 1|X) well. Logistic
regression seems well suited to the task.



Linear Regression continued

Now suppose we have a response variable with three possible
values. A patient presents at the emergency room, and we must
classify them according to their symptoms.

1 if stroke;
Y = (¢ 2 if drug overdose;

3 if epileptic seizure.

This coding suggests an ordering, and in fact implies that the
difference between stroke and drug overdose is the same as
between drug overdose and epileptic seizure.
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Linear Regression continued

Now suppose we have a response variable with three possible
values. A patient presents at the emergency room, and we must
classify them according to their symptoms.

1 if stroke;
Y = (¢ 2 if drug overdose;

3 if epileptic seizure.

This coding suggests an ordering, and in fact implies that the
difference between stroke and drug overdose is the same as
between drug overdose and epileptic seizure.

Linear regression is not appropriate here.
Multiclass Logistic Regression or Discriminant Analysis are
more appropriate.

5/ 40



Logistic Regression

Let’s write p(X) = Pr(Y = 1|X) for short and consider using
balance to predict default. Logistic regression uses the form

ePotB1X
p(X) = 1+ efot/ X’

(e ~ 2.71828 is a mathematical constant [Euler’s number.])
It is easy to see that no matter what values 5y, 81 or X take,
p(X) will have values between 0 and 1.
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Logistic Regression
Let’s write p(X) = Pr(Y = 1|X) for short and consider using
balance to predict default. Logistic regression uses the form
ePotB1X

p(X) = 1+ efot/ X’

(e ~ 2.71828 is a mathematical constant [Euler’s number.])
It is easy to see that no matter what values 5y, 81 or X take,

p(X) will have values between 0 and 1.

A bit of rearrangement gives

og ({200 ) = fo + i

This monotone transformation is called the log odds or logit
transformation of p(X). (by log we mean natural log: In.)



Linear versus Logistic Regression
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Maximum Likelihood

We use maximum likelihood to estimate the parameters.
50; H P -fz H p(xl))
iy, =1 1:y;=0

This likelihood gives the probability of the observed zeros and
ones in the data. We pick By and 1 to maximize the likelihood
of the observed data.
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Maximum Likelihood

We use maximum likelihood to estimate the parameters.
50; H P xz H p(xl))
iy, =1 1:y;=0

This likelihood gives the probability of the observed zeros and
ones in the data. We pick By and 1 to maximize the likelihood
of the observed data.

Most statistical packages can fit linear logistic regression models
by maximum likelihood. In R we use the glm function.

Coefficient Std. Error Z-statistic P-value
Intercept -10.6513 0.3612 -29.5 < 0.0001
balance 0.0055 0.0002 24.9 < 0.0001

8
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Making Predictions

What is our estimated probability of default for someone with
a balance of $10007?

eBo+BrX ¢—10.6513-0.0055x 1000

p(X) = 0.006

1 1 eBothix T 1+ ¢—10.6513+0.0055x 1000
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Making Predictions

What is our estimated probability of default for someone with
a balance of $10007?

eBo+BrX o—10.6513+0.0055x 1000
p(X) = 1+ chotBiX 1+ e 1065I3+0.0055x1000 — 0.006
With a balance of $20007?
eBot+BLX o—10.6513+0.0055 %2000
p(X) = 0.586

) 1 eBothix ~ 1+ ¢—10.6513+0.0055x 2000
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Lets do it again, using student as the predictor.

Coefficient Std. Error Z-statistic P-value
Intercept -3.5041 0.0707 -49.55 < 0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004
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Lets do it again, using student as the predictor.

Coefficient Std. Error Z-statistic P-value
Intercept -3.5041 0.0707 -49.55 < 0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

P e—3.5041+0.4049><1
Pr(default=Yes|student=Yes) = 1 ¢ 350110004051 — 0.0431,
3. .

- o —3:504140.4049 %0
Pr(default=Yes|student=No) = 1 ¢ 350110004050 — 0.0292.
3. .
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Logistic regression with several variables

X
log (%) =Bo+ B X1+ + BpXp

650+,31X1+"'+/3pxp

p(X) = 1 + efotPrXat+B8pXp
Coefficient Std. Error Z-statistic = P-value
Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] -0.6468 0.2362 -2.74 0.0062

Why is coefficient for student negative, while it was positive
before?



Default Rate
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Students tend to have higher balances than non-students,
so their marginal default rate is higher than for
non-students.

But for each level of balance, students default less than
non-students.

Multiple logistic regression can tease this out.
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Example: South African Heart Disease

160 cases of MI (myocardial infarction) and 302 controls
(all male in age range 15-64), from Western Cape, South
Africa in early 80s.

Overall prevalence very high in this region: 5.1%.
Measurements on seven predictors (risk factors), shown in
scatterplot matrix.

Goal is to identify relative strengths and directions of risk
factors.

This was part of an intervention study aimed at educating
the public on healthier diets.
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Scatterplot ma-
trix of the South
African Heart

Disease data. The
response is color
coded — The cases
(MI) are red, the
controls turquoise.
famhist is a binary
variable, with 1
indicating family
history of MI.
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> heartfit<-glm(chd~.,data=heart,family=binomial)
> summary (heartfit)

Call:
glm(formula = chd ~ ., family = binomial, data = heart)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.1295997 0.9641558 -4.283 1.84e-05 *x*
sbp 0.0057607 0.0056326 1.023 0.30643
tobacco 0.0795256 0.0262150 3.034 0.00242 =*x
1d1 0.1847793 0.0574115 3.219 0.00129 =*x
famhistPresent 0.9391855 0.2248691 4.177 2.96e-05 **x*
obesity -0.0345434 0.0291053 -1.187 0.23529
alcohol 0.0006065 0.0044550 0.136 0.89171

age 0.0425412 0.0101749 4.181 2.90e-05 **x

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 483.17 on 454 degrees of freedom
AIC: 499.17
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Case-control sampling and logistic regression

In South African data, there are 160 cases, 302 controls —
7 = 0.35 are cases. Yet the prevalence of MI in this region
is m = 0.05.

With case-control samples, we can estimate the regression
parameters 3; accurately (if our model is correct); the
constant term [y is incorrect.

We can correct the estimated intercept by a simple
transformation

T
1—-7

- ~ T
Bo :BO'i"lOgm — log

Often cases are rare and we take them all; up to five times
that number of controls is sufficient. See next frame
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Coefficient Variance

Diminishing returns in unbalanced binary data
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Sampling more
controls  than
cases  reduces
the variance of
the parameter
estimates. But
after a ratio of
about 5 to 1
the variance re-
duction flattens
out.
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Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.
It is easily generalized to more than two classes. One version
(used in the R package glmnet) has the symmetric form

ePok+B1k X1+ +Bpe Xp

PI‘(Y == k|X) = Zle 6180£+515X1+-..+5;MXP

Here there is a linear function for each class.
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Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.

It is easily generalized to more than two classes. One version

(used in the R package glmnet) has the symmetric form
ePok+B1k X1+ +Bpe Xp

Zf_l eBoetBreXit...+Bpe Xp

Pr(Y = k|X) =

Here there is a linear function for each class.

(The mathier students will recognize that some cancellation is
possible, and only K — 1 linear functions are needed as in
2-class logistic regression.)
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Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.
It is easily generalized to more than two classes. One version
(used in the R package glmnet) has the symmetric form

ePok+B1k X1+ +Bpe Xp

PI‘(Y == k|X) = Zle 6180£+515X1+-..+5;MXP

Here there is a linear function for each class.

(The mathier students will recognize that some cancellation is
possible, and only K — 1 linear functions are needed as in
2-class logistic regression.)

Multiclass logistic regression is also referred to as multinomial
Tegression.
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Discriminant Analysis

Here the approach is to model the distribution of X in each of
the classes separately, and then use Bayes theorem to flip things
around and obtain Pr(Y|X).

When we use normal (Gaussian) distributions for each class,
this leads to linear or quadratic discriminant analysis.

However, this approach is quite general, and other distributions
can be used as well. We will focus on normal distributions.
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Bayes theorem for classification
Thomas Bayes was a famous mathematician whose name
represents a big subfield of statistical and probabilistic
modeling. Here we focus on a simple result, known as Bayes
theorem:
Pr(X =z|Y =k)-Pr(Y = k)
Pr(X =x)

Pr(Y = k|X =z) =
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Bayes theorem for classification
Thomas Bayes was a famous mathematician whose name
represents a big subfield of statistical and probabilistic
modeling. Here we focus on a simple result, known as Bayes
theorem:
Pr(X =z|Y =k)-Pr(Y =k)
Pr(X =x)

Pr(Y = k|X =z) =

One writes this slightly differently for discriminant analysis:

Pr(Y =kl X =2) = M, where

B Z{il Wlfl(x)

o fr(z) =Pr(X =z|Y = k) is the density for X in class k.
Here we will use normal densities for these, separately in
each class.

e 1, = Pr(Y = k) is the marginal or prior probability for
class k.
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Classify to the highest density

We classify a new point according to which density is highest.

21 /40



Classify to the highest density

We classify a new point according to which density is highest.

When the priors are different, we take them into account as
well, and compare 7y, fi(z). On the right, we favor the pink
class — the decision boundary has shifted to the left.



Why discriminant analysis?

e When the classes are well-separated, the parameter
estimates for the logistic regression model are surprisingly
unstable. Linear discriminant analysis does not suffer from
this problem.

e If n is small and the distribution of the predictors X is
approximately normal in each of the classes, the linear
discriminant model is again more stable than the logistic
regression model.

e Linear discriminant analysis is popular when we have more

than two response classes, because it also provides
low-dimensional views of the data.



Linear Discriminant Analysis when p =1

The Gaussian density has the form

fk(x) = \/%Uk 67%<%>

Here pu is the mean, and o} the variance (in class k). We will
assume that all the o, = o are the same.
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Linear Discriminant Analysis when p =1

The Gaussian density has the form

fk(x) = \/%Uk 67%<%>

Here pu is the mean, and o} the variance (in class k). We will
assume that all the o, = o are the same.

Plugging this into Bayes formula, we get a rather complex
expression for pi(z) = Pr(Y = k| X = z):

)
- 2
Zl LT 271_06_%( U#z)

pr(z) =

Happily, there are simplifications and cancellations.



Discriminant functions

To classify at the value X = z, we need to see which of the
pr(x) is largest. Taking logs, and discarding terms that do not
depend on k, we see that this is equivalent to assigning x to the
class with the largest discriminant score:

2
N M Hy
ok(x) = - 2 292 + log(7k)

Note that dx(x) is a linear function of .
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Discriminant functions

To classify at the value X = z, we need to see which of the
pr(x) is largest. Taking logs, and discarding terms that do not
depend on k, we see that this is equivalent to assigning x to the
class with the largest discriminant score:

2
_ HE Hi
Op(z) =a - —5 — 55 +log(m)
Note that dx(x) is a linear function of .

If there are K = 2 classes and 7w = w9 = 0.5, then one can see
that the decision boundary is at

p1 + o

5

(See if you can show this)

V]



=1.

= 1.5, 1 =m = 0.5, and 0% =

—1.5, po

Example with p
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=1.

2 _

1.5, mp =m =0.5, and ¢

y U2
Typically we don’t know these parameters; we just have the

—-1.5

Example with p

training data. In that case we simply estimate the parameters

and plug them into the rule.
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Estimating the parameters

N ng
Ty = —
n
N 1
He = . T
o ity =k
K
1
5? = > D (i )
6° = x; —
n— K ' ( 7 /’[/k)
k=11i:y;=k
K
> g
= o)
n—-K "
k=1
21 A2
where 63 = =5 >_;. .~ (@i — fu)” is the usual formula for the

estimated variance in the kth class.
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Linear Discriminant Analysis when p > 1

: 1 )T (e
Densﬂ;y; f(gj):We s@—pw) ' B (z—p)
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Linear Discriminant Analysis when p > 1

: 1 )T (e
Den31ty; f(gj):We s@—pw) ' B (z—p)

1
Discriminant function: dx(x) = 2Ty, — iuffl_luk + log g,
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Linear Discriminant Analysis when p > 1

: 1 )T (e
Den31ty; f(gj):We s@—pw) ' B (z—p)

1
Discriminant function: dx(x) = 2Ty, — §u£2_luk + log g,

Despite its complex form,
0k () = ko + 11 + cpaxa + ... + crprp — a linear function.
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[lustration: p = 2 and K = 3 classes

X

” 2 0 2 4 -4 2 0 2 4
X1 X1

Here m; = my = m3 = 1/3.

The dashed lines are known as the Bayes decision boundaries.
Were they known, they would yield the fewest misclassification
errors, among all possible classifiers.
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Fisher’s Iris Data
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Fisher’s Discriminant Plot
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When there are K classes, linear discriminant analysis can be
viewed exactly in a K — 1 dimensional plot.
Why?
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Fisher’s Discriminant Plot
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When there are K classes, linear discriminant analysis can be
viewed exactly in a K — 1 dimensional plot.

Why? Because it essentially classifies to the closest centroid,
and they span a K — 1 dimensional plane.



Fisher’s Discriminant Plot
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When there are K classes, linear discriminant analysis can be
viewed exactly in a K — 1 dimensional plot.

Why? Because it essentially classifies to the closest centroid,
and they span a K — 1 dimensional plane.

Even when K > 3, we can find the “best” 2-dimensional plane

for visualizing the discriminant rule.



From d;(z) to probabilities

Once we have estimates 0 (), we can turn these into estimates

for class probabilities:

— esk(m)
Pr(Y =kl X =2) = ——.
leil eél(x)

So classifying to the largest Sk(af) amounts to classifying to the
class for which Pr(Y = k| X = z) is largest.



From d;(z) to probabilities

Once we have estimates 0 (), we can turn these into estimates

for class probabilities:

— esk(m)
Pr(Y =kl X =2) = ——.
leil eél(x)

So classifying to the largest Sk(af) amounts to classifying to the
class for which Pr(Y = k| X = z) is largest.

When K = 2, we classify to class 2 if 13\1"(Y =2|X =x) > 0.5,
else to class 1.
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LDA on Credit Data

True Default Status

No  Yes | Total
Predicted No | 9644 252 | 9896
Default Status  Yes 23 81 104
Total | 9667 333 | 10000

(23 + 252) /10000 errors — a 2.75% misclassification rate!

Some caveats:

e This is training error, and we may be overfitting.
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No  Yes | Total
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Default Status  Yes 23 81 104
Total | 9667 333 | 10000

(23 + 252) /10000 errors — a 2.75% misclassification rate!
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e This is training error, and we may be overfitting. Not a big
concern here since n = 10000 and p = 2!



LDA on Credit Data
True Default Status

No  Yes | Total
Predicted No | 9644 252 | 9896
Default Status  Yes 23 81 104
Total | 9667 333 | 10000

(23 + 252) /10000 errors — a 2.75% misclassification rate!

Some caveats:

e This is training error, and we may be overfitting. Not a big
concern here since n = 10000 and p = 2!

o If we classified to the prior — always to class No in this
case — we would make 333/10000 errors, or only 3.33%.



LDA on Credit Data
True Default Status

No  Yes | Total
Predicted No | 9644 252 | 9896
Default Status  Yes 23 81 104
Total | 9667 333 | 10000

(23 + 252) /10000 errors — a 2.75% misclassification rate!

Some caveats:

e This is training error, and we may be overfitting. Not a big
concern here since n = 10000 and p = 2!

o If we classified to the prior — always to class No in this
case — we would make 333/10000 errors, or only 3.33%.

e Of the true No’s, we make 23/9667 = 0.2% errors; of the
true Yes’s, we make 252/333 = 75.7% errors!



Types of errors

False positive rate: The fraction of negative examples that are
classified as positive — 0.2% in example.

False negative rate: The fraction of positive examples that are
classified as negative — 75.7% in example.

We produced this table by classifying to class Yes if

f’\r(Default = Yes|Balance, Student) > 0.5

We can change the two error rates by changing the threshold
from 0.5 to some other value in [0, 1]:

—

Pr(Default = Yes|Balance, Student) > threshold,

and vary threshold.
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Varying the threshold

= Overall Error
—— False Positive
—— False Negative

Error Rate
0.4
|

0.2

0.0
|

T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Threshold

In order to reduce the false negative rate, we may want to
reduce the threshold to 0.1 or less.
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ROC Curve
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The ROC plot displays both simultaneously.



ROC Curve
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The ROC plot displays both simultaneously.

Sometimes we use the AUC or area under the curve to
summarize the overall performance. Higher AUC'is good.



Other forms of Discriminant Analysis

_ mJr(x)
S mfix)

When f(z) are Gaussian densities, with the same covariance

Pr(Y = k|X =)

matrix 3 in each class, this leads to linear discriminant analysis.

By altering the forms for fi(x), we get different classifiers.

e With Gaussians but different 3 in each class, we get
quadratic discriminant analysis.
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Other forms of Discriminant Analysis

__ mfr(®)
T NK
211 i)
When f(z) are Gaussian densities, with the same covariance

matrix 3 in each class, this leads to linear discriminant analysis.
By altering the forms for fi(x), we get different classifiers.

Pr(Y = k|X =)

e With Gaussians but different 3 in each class, we get
quadratic discriminant analysis.

e With fi(x) = 1;:1 fjk(x;) (conditional independence
model) in each class we get naive Bayes. For Gaussian this
means the 3 are diagonal.
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Other forms of Discriminant Analysis

Pr(Y — kX — o) — _"hdk(@)
v )Z{immx)

When f(z) are Gaussian densities, with the same covariance

matrix 3 in each class, this leads to linear discriminant analysis.

By altering the forms for fi(x), we get different classifiers.
e With Gaussians but different 3 in each class, we get
quadratic discriminant analysis.
e With fi(x) = 1;:1 fjk(x;) (conditional independence
model) in each class we get naive Bayes. For Gaussian this
means the 3 are diagonal.

e Many other forms, by proposing specific density models for
fx(z), including nonparametric approaches.
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Quadratic Discriminant Analysis
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Because the Xj are different, the quadratic terms matter.
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Naive Bayes

Assumes features are independent in each class.
Useful when p is large, and so multivariate methods like QDA
and even LDA break down.

e Gaussian naive Bayes assumes each X is diagonal:

P
Sr(z) oc log | [T frilxs)

Jj=1

1 | (w5 — puag)? 5
= _52 ————— tlogoy,| +logm
j=1 Tkj

e can use for mizred feature vectors (qualitative and
quantitative). If X is qualitative, replace fi;(x;) with
probability mass function (histogram) over discrete
categories.

Despite strong assumptions, naive Bayes often produces good
classification results.
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Logistic Regression versus LDA

For a two-class problem, one can show that for LDA

log <1§1](7T()x)> = log (g;g;) — G+ ezt ..+ oy

So it has the same form as logistic regression.

The difference is in how the parameters are estimated.
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Logistic Regression versus LDA

For a two-class problem, one can show that for LDA

log <1€11()T()x)> = log <§;Ez;) — G+ ezt ..+ oy

So it has the same form as logistic regression.

The difference is in how the parameters are estimated.

e Logistic regression uses the conditional likelihood based on
Pr(Y|X) (known as discriminative learning).

e LDA uses the full likelihood based on Pr(X,Y’) (known as
generative learning).

e Despite these differences, in practice the results are often
very similar.

Footnote: logistic regression can also fit quadratic boundaries
like QDA, by explicitly including quadratic terms in the model.
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Summary

Logistic regression is very popular for classification,
especially when K = 2.

LDA is useful when n is small, or the classes are well
separated, and Gaussian assumptions are reasonable. Also
when K > 2.

Naive Bayes is useful when p is very large.

See Section 4.5 for some comparisons of logistic regression,
LDA and KNN.
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