What is Statistical Learning?
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Shown are Sales vs TV, Radio and Newspaper, with a blue
linear-regression line fit separately to each.

Can we predict Sales using these three?

Perhaps we can do better using a model

Sales ~ f(TV,Radio, Newspaper)
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Notation

Here Sales is a response or target that we wish to predict. We
generically refer to the response as Y.

TV is a feature, or input, or predictor; we name it Xi.

Likewise name Radio as Xo, and so on.

We can refer to the input vector collectively as

X1
X=1 Xy
X3
Now we write our model as
Y = f(X)+e

where € captures measurement errors and other discrepancies.
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What is f(X) good for?

e With a good f we can make predictions of Y at new points
X ==z

e We can understand which components of
X = (X1,X2,...,X,) are important in explaining Y, and
which are irrelevant. e.g. Seniority and Years of
Education have a big impact on Income, but Marital
Status typically does not.

e Depending on the complexity of f, we may be able to
understand how each component X; of X affects Y.
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Is there an ideal f(X)? In particular, what is a good value for
f(X) at any selected value of X, say X = 4?7 There can be
many Y values at X = 4. A good value is

f4) =EY|X =4)
E(Y|X = 4) means expected value (average) of Y given X = 4.
This ideal f(x) = E(Y|X = z) is called the regression function.
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The regression function f(x)

e Is also defined for vector X; e.g.
f(z) = f(z1,22,73) = E(Y[X1 = 71, Xo = 72, X3 = 23)
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The regression function f(x)

e Is also defined for vector X; e.g.

f(@) = f(z1,22,23) = E(Y|X1 = 21, Xo = 22, X3 = 23)

e Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f(z) = E(Y|X = z) is the
function that minimizes E[(Y — g(X))?|X = x] over all
functions g at all points X = x.
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The regression function f(x)

e Is also defined for vector X; e.g.

f(@) = f(z1,22,23) = E(Y|X1 = 21, Xo = 22, X3 = 23)

e Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f(z) = E(Y|X = z) is the
function that minimizes E[(Y — g(X))?|X = x] over all
functions g at all points X = x.

e ¢ =Y — f(z) is the irreducible error — i.e. even if we knew
f(x), we would still make errors in prediction, since at each
X = x there is typically a distribution of possible Y values.

e For any estimate f(z) of f(z), we have

BI(Y — f(X)?*|X = 2] = [f(z) — f(@)> + Var(e)
Reducible Irreducible



How to estimate f

e Typically we have few if any data points with X =4
exactly.

e So we cannot compute F(Y|X = x)!

e Relax the definition and let

f(z) = Ave(Y|X € N(x))

where N (x) is some neighborhood of x.
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e Nearest neighbor averaging can be pretty good for small p
—i.e. p <4 and large-ish N.

e We will discuss smoother versions, such as kernel and
spline smoothing later in the course.



e Nearest neighbor averaging can be pretty good for small p
—i.e. p <4 and large-ish N.

e We will discuss smoother versions, such as kernel and
spline smoothing later in the course.

e Nearest neighbor methods can be lousy when p is large.
Reason: the curse of dimensionality. Nearest neighbors
tend to be far away in high dimensions.

e We need to get a reasonable fraction of the IV values of y;
to average to bring the variance down—e.g. 10%.

e A 10% neighborhood in high dimensions need no longer be
local, so we lose the spirit of estimating E(Y|X = z) by
local averaging.
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Parametric and structured models

The linear model is an important example of a parametric
model:

fL(X) = Bo+ B1X1 + BoXa+ ... Bp X,

e A linear model is specified in terms of p + 1 parameters
Bo, B1s - - - Bp-

e We estimate the parameters by fitting the model to
training data.

e Although it is almost never correct, a linear model often
serves as a good and interpretable approximation to the
unknown true function f(X).



A linear model f7(X) = By + f1X gives a reasonable fit here

A quadratic model fQ(X) = By + 51X + B2 X2 fits slightly
better.
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Simulated example. Red points are simulated values for income
from the model

income = f(education,seniority) + ¢
f is the blue surface.
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Linear regression model fit to the simulated data.

~

fr(education, seniority) = ﬁ0+31 Xeducation—i—@ Xseniority
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More flexible regression model fs(education, seniority) fit to
the simulated data. Here we use a technique called a thin-plate
spline to fit a flexible surface. We control the roughness of the
fit (chapter 7).
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Even more flexible spline regression model
fs(education, seniority) fit to the simulated data. Here the

fitted model makes no errors on the training data! Also known

as overfitting.
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Some trade-offs

e Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines
are not.
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Some trade-offs

e Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines
are not.

e Good fit versus over-fit or under-fit.
— How do we know when the fit is just right?

e Parsimony versus black-box.
— We often prefer a simpler model involving fewer
variables over a black-box predictor involving them all.



Interpretability

High

Low
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Least Squares
Generalized Additive Models
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Support Vector Machines
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Assessing Model Accuracy

Suppose we fit a model f () to some training data
Tr = {z;,v;}Y, and we wish to see how well it performs.

e We could compute the average squared prediction error
over Tr:
MSET = Avejere[ys — f(2:)]?
This may be biased toward more overfit models.

e Instead we should, if possible, compute it using fresh test
data Te = {z;, y; 1)1

MSETe = AVeieTe[yi - f(xl)}Q
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Black curve is truth. Red curve on right is MSEr., grey curve is
MSET,. Orange, blue and green curves/squares correspond to fits of
different flexibility.
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Here the truth is smoother, so the smoother fit and linear model do
really well.
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Here the truth is wiggly and the noise is low, so the more flexible fits
do the best.



Bias-Variance Trade-off

Suppose we have fit a model f(:z:) to some training data Tr, and
let (zo,y0) be a test observation drawn from the population. If
the true model is Y = f(X) + € (with f(z) = E(Y|X = z)),
then

N 2 N ~
E (yo — f(x0)> = Var(f(z0)) + [Bias(f(x0))]2 + Var(e).

The expectation averages over the variability of yy as well as

the variability in Tr. Note that Bias(f(x0))] = E[f(x0)] — f(20).
Typically as the flexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.



Bias-variance trade-off for the three examples
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Classification Problems

Here the response variable Y is qualitative — e.g. email is one
of C = (spam, ham) (ham=good email), digit class is one of
C=1{0,1,...,9}. Our goals are to:
e Build a classifier C'(X) that assigns a class label from C to
a future unlabeled observation X.
e Assess the uncertainty in each classification

e Understand the roles of the different predictors among
X =(X1,X0,...,X)).
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Is there an ideal C'(X)? Suppose the K elements in C are
numbered 1,2,..., K. Let

pp(z) =Pr(Y =kl X =2), k=1,2,... K.

These are the conditional class probabilities at x; e.g. see little
barplot at « = 5. Then the Bayes optimal classifier at z is

C(z) = j if pj(x) = max{p1(x), p2(2), ..., px (2)}
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Nearest-neighbor averaging can be used as before.
Also breaks down as dimension grows. However, the impact on
C(x) is less than on pi(z), k=1,..., K.
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Classification: some details

e Typically we measure the performance of C () using the
misclassification error rate:

Errre = Avejerel [yi # (1))

e The Bayes classifier (using the true py(x)) has smallest
error (in the population).
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Classification: some details

Typically we measure the performance of C () using the
misclassification error rate:

Errre = Avejerel [yi # (1))

The Bayes classifier (using the true pi(x)) has smallest
error (in the population).

Support-vector machines build structured models for C'(z).

We will also build structured models for representing the
pr(z). e.g. Logistic regression, generalized additive models.



Example: K-nearest neighbors in two dimensions

X2
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KNN: K=10




KNN: K=1 KNN: K=100
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