
Chapter 3

Probability and Information

Theory

In this chapter, we describe probability theory and information theory.

Probability theory is a mathematical framework for representing uncertain
statements. It provides a means of quantifying uncertainty as well as axioms for
deriving new uncertain statements. In artificial intelligence applications, we use
probability theory in two major ways. First, the laws of probability tell us how AI
systems should reason, so we design our algorithms to compute or approximate
various expressions derived using probability theory. Second, we can use probability
and statistics to theoretically analyze the behavior of proposed AI systems.

Probability theory is a fundamental tool of many disciplines of science and
engineering. We provide this chapter to ensure that readers whose background is
primarily in software engineering, with limited exposure to probability theory, can
understand the material in this book.

While probability theory allows us to make uncertain statements and to reason
in the presence of uncertainty, information theory enables us to quantify the amount
of uncertainty in a probability distribution.

If you are already familiar with probability theory and information theory,
you may wish to skip this chapter except for section , which describes the3.14
graphs we use to describe structured probabilistic models for machine learning. If
you have absolutely no prior experience with these subjects, this chapter should
be sufficient to successfully carry out deep learning research projects, but we do
suggest that you consult an additional resource, such as Jaynes 2003( ).
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3.1 Why Probability?

Many branches of computer science deal mostly with entities that are entirely
deterministic and certain. A programmer can usually safely assume that a CPU will
execute each machine instruction flawlessly. Errors in hardware do occur but are
rare enough that most software applications do not need to be designed to account
for them. Given that many computer scientists and software engineers work in a
relatively clean and certain environment, it can be surprising that machine learning
makes heavy use of probability theory.

Machine learning must always deal with uncertain quantities and sometimes
stochastic (nondeterministic) quantities. Uncertainty and stochasticity can arise
from many sources. Researchers have made compelling arguments for quantifying
uncertainty using probability since at least the 1980s. Many of the arguments
presented here are summarized from or inspired by Pearl 1988( ).

Nearly all activities require some ability to reason in the presence of uncertainty.
In fact, beyond mathematical statements that are true by definition, it is difficult
to think of any proposition that is absolutely true or any event that is absolutely
guaranteed to occur.

There are three possible sources of uncertainty:

1. Inherent stochasticity in the system being modeled. For example, most
interpretations of quantum mechanics describe the dynamics of subatomic
particles as being probabilistic. We can also create theoretical scenarios that
we postulate to have random dynamics, such as a hypothetical card game
where we assume that the cards are truly shuffled into a random order.

2. Incomplete observability. Even deterministic systems can appear stochastic
when we cannot observe all the variables that drive the behavior of the
system. For example, in the Monty Hall problem, a game show contestant is
asked to choose between three doors and wins a prize held behind the chosen
door. Two doors lead to a goat while a third leads to a car. The outcome
given the contestant’s choice is deterministic, but from the contestant’s point
of view, the outcome is uncertain.

3. Incomplete modeling. When we use a model that must discard some of
the information we have observed, the discarded information results in
uncertainty in the model’s predictions. For example, suppose we build a
robot that can exactly observe the location of every object around it. If the
robot discretizes space when predicting the future location of these objects,
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then the discretization makes the robot immediately become uncertain about
the precise position of objects: each object could be anywhere within the
discrete cell that it was observed to occupy.

In many cases, it is more practical to use a simple but uncertain rule rather
than a complex but certain one, even if the true rule is deterministic and our
modeling system has the fidelity to accommodate a complex rule. For example, the
simple rule “Most birds fly” is cheap to develop and is broadly useful, while a rule
of the form, “Birds fly, except for very young birds that have not yet learned to
fly, sick or injured birds that have lost the ability to fly, flightless species of birds
including the cassowary, ostrich and kiwi. . . ” is expensive to develop, maintain
and communicate and, after all this effort, is still brittle and prone to failure.

While it should be clear that we need a means of representing and reasoning
about uncertainty, it is not immediately obvious that probability theory can provide
all the tools we want for artificial intelligence applications. Probability theory
was originally developed to analyze the frequencies of events. It is easy to see
how probability theory can be used to study events like drawing a certain hand of
cards in a poker game. These kinds of events are often repeatable. When we say
that an outcome has a probability p of occurring, it means that if we repeated the
experiment (e.g., drawing a hand of cards) infinitely many times, then a proportion
p of the repetitions would result in that outcome. This kind of reasoning does not
seem immediately applicable to propositions that are not repeatable. If a doctor
analyzes a patient and says that the patient has a 40 percent chance of having
the flu, this means something very different—we cannot make infinitely many
replicas of the patient, nor is there any reason to believe that different replicas of
the patient would present with the same symptoms yet have varying underlying
conditions. In the case of the doctor diagnosing the patient, we use probability
to represent a degree of belief, with 1 indicating absolute certainty that the
patient has the flu and 0 indicating absolute certainty that the patient does not
have the flu. The former kind of probability, related directly to the rates at which
events occur, is known as frequentist probability, while the latter, related to
qualitative levels of certainty, is known as Bayesian probability.

If we list several properties that we expect common sense reasoning about
uncertainty to have, then the only way to satisfy those properties is to treat
Bayesian probabilities as behaving exactly the same as frequentist probabilities.
For example, if we want to compute the probability that a player will win a poker
game given that she has a certain set of cards, we use exactly the same formulas
as when we compute the probability that a patient has a disease given that she
has certain symptoms. For more details about why a small set of common sense
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assumptions implies that the same axioms must control both kinds of probability,
see ( ).Ramsey 1926

Probability can be seen as the extension of logic to deal with uncertainty. Logic
provides a set of formal rules for determining what propositions are implied to
be true or false given the assumption that some other set of propositions is true
or false. Probability theory provides a set of formal rules for determining the
likelihood of a proposition being true given the likelihood of other propositions.

3.2 Random Variables

A random variable is a variable that can take on different values randomly. We
typically denote the random variable itself with a lowercase letter in plain typeface,
and the values it can take on with lowercase script letters. For example, x1 and x2
are both possible values that the random variable x can take on. For vector-valued
variables, we would write the random variable as x and one of its values as x. On
its own, a random variable is just a description of the states that are possible; it
must be coupled with a probability distribution that specifies how likely each of
these states are.

Random variables may be discrete or continuous. A discrete random variable
is one that has a finite or countably infinite number of states. Note that these
states are not necessarily the integers; they can also just be named states that
are not considered to have any numerical value. A continuous random variable is
associated with a real value.

3.3 Probability Distributions

A probability distribution is a description of how likely a random variable or
set of random variables is to take on each of its possible states. The way we
describe probability distributions depends on whether the variables are discrete or
continuous.

3.3.1 Discrete Variables and Probability Mass Functions

A probability distribution over discrete variables may be described using a proba-
bility mass function (PMF). We typically denote probability mass functions with
a capital P . Often we associate each random variable with a different probability
mass function and the reader must infer which PMF to use based on the identity
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of the random variable, rather than on the name of the function; P (x) is usually
not the same as y .P ( )

The probability mass function maps from a state of a random variable to
the probability of that random variable taking on that state. The probability
that x = x is denoted as P (x), with a probability of 1 indicating that x = x is
certain and a probability of 0 indicating that x = x is impossible. Sometimes
to disambiguate which PMF to use, we write the name of the random variable
explicitly: P (x = x). Sometimes we define a variable first, then use ∼ notation to
specify which distribution it follows later: x x .∼ P ( )

Probability mass functions can act on many variables at the same time. Such
a probability distribution over many variables is known as a joint probability
distribution. P (x = x, y = y ) denotes the probability that x = x and y = y

simultaneously. We may also write for brevity.P x, y( )

To be a PMF on a random variable x, a function P must satisfy the following
properties:

• The domain of must be the set of all possible states of x.P

• ∀ ∈x x,0 ≤ P (x) ≤ 1. An impossible event has probability , and no state0
can be less probable than that. Likewise, an event that is guaranteed to
happen has probability , and no state can have a greater chance of occurring.1

•


x∈x P (x) = 1. We refer to this property as being normalized. Without
this property, we could obtain probabilities greater than one by computing
the probability of one of many events occurring.

For example, consider a single discrete random variable x with k different
states. We can place a uniform distribution on x—that is, make each of its
states equally likely—by setting its PMF to

P x( = x i) =
1

k
(3.1)

for all i. We can see that this fits the requirements for a probability mass function.
The value 1

k is positive because is a positive integer. We also see thatk



i

P x( = x i) =


i

1

k
=

k

k
= 1, (3.2)

so the distribution is properly normalized.
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3.3.2 Continuous Variables and Probability Density Functions

When working with continuous random variables, we describe probability distri-
butions using a probability density function (PDF) rather than a probability
mass function. To be a probability density function, a function p must satisfy the
following properties:

• The domain of must be the set of all possible states of x.p

• ∀ ∈ ≥ ≤x x, p x( ) 0 ( ) . pNote that we do not require x 1.

•

p x dx( ) = 1.

A probability density function p(x) does not give the probability of a specific
state directly; instead the probability of landing inside an infinitesimal region with
volume is given by .δx p x δx( )

We can integrate the density function to find the actual probability mass of a
set of points. Specifically, the probability that x lies in some set S is given by the
integral of p(x) over that set. In the univariate example, the probability that x
lies in the interval is given by[ ]a, b


[ ]a,b p x dx( ) .

For an example of a PDF corresponding to a specific probability density over
a continuous random variable, consider a uniform distribution on an interval of
the real numbers. We can do this with a function u(x;a, b), where a and b are the
endpoints of the interval, with b > a. The “;” notation means “parametrized by”;
we consider x to be the argument of the function, while a and b are parameters
that define the function. To ensure that there is no probability mass outside the
interval, we say u(x;a, b) = 0 for all x ∈ [a, b] [. Within a, b], u(x;a, b) = 1

b a− . We
can see that this is non-negative everywhere. Additionally, it integrates to 1. We
often denote that x follows the uniform distribution on [a, b] by writing x ∼ U(a, b).

3.4 Marginal Probability

Sometimes we know the probability distribution over a set of variables and we want
to know the probability distribution over just a subset of them. The probability
distribution over the subset is known as the marginal probability distribution.

For example, suppose we have discrete random variables x and y, and we know
P ,(x y . We can find x with the :) P ( ) sum rule

∀ ∈x x x, P ( = ) =x


y

P x, y .( = x y = ) (3.3)
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The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P (x y, ) are written in a grid with
different values of x in rows and different values of y in columns, it is natural to
sum across a row of the grid, then write P(x) in the margin of the paper just to
the right of the row.

For continuous variables, we need to use integration instead of summation:

p x( ) =


p x, y dy.( ) (3.4)

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some
other event has happened. This is called a conditional probability. We denote
the conditional probability that y = y given x = x as P(y = y | x = x). This
conditional probability can be computed with the formula

P y x( = y | x = ) =
P y, x( = y x = )

P x( = x )
. (3.5)

The conditional probability is only defined when P(x = x) > 0.We cannot compute
the conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what
would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling,
which we do not explore in this book.

3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decomposed
into conditional distributions over only one variable:

P (x(1) , . . . , x( )n ) = (P x(1))Πn
i=2P (x( )i | x(1), . . . , x( 1)i− ). (3.6)

This observation is known as the chain rule, or product rule, of probability.
It follows immediately from the definition of conditional probability in equation .3.5

57



CHAPTER 3. PROBABILITY AND INFORMATION THEORY

For example, applying the definition twice, we get

P , , P , P ,(a b c) = (a b| c) (b c)

P , P P(b c) = ( )b c| ( )c

P , , P , P P .(a b c) = (a b| c) ( )b c| ( )c

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution
can be expressed as a product of two factors, one involving only x and one involving
only y:

∀ ∈ ∈x x, y y x y x y (3.7), p( = x, = ) = (y p = ) (x p = )y .

Two random variables x and yare conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

∀ ∈ ∈ ∈ | | |x x, y y, z z x y, p( = x, = y z x= ) = (z p = x z y= ) (z p = y z = )z .
(3.8)

We can denote independence and conditional independence with compact
notation: x y⊥ means that x and y are independent, while x y z⊥ | means that x
and y are conditionally independent given z.

3.8 Expectation, Variance and Covariance

The expectation, or expected value, of some function f(x) with respect to a
probability distribution P(x) is the average, or mean value, that f takes on when
x is drawn from P. For discrete variables this can be computed with a summation:

Ex∼P [ ( )] =f x


x

P x f x ,( ) ( ) (3.9)

while for continuous variables, it is computed with an integral:

Ex∼p [ ( )] =f x



p x f x dx.( ) ( ) (3.10)
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When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, as in Ex[f(x)].
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, as in E[f(x)]. By default, we can assume that E[·] averages over
the values of all the random variables inside the brackets. Likewise, when there is
no ambiguity, we may omit the square brackets.

Expectations are linear, for example,

Ex[ ( ) + ( )] = αf x βg x αEx[ ( )] +f x βEx [ ( )]g x , (3.11)

when and are not dependent on .α β x

The variance gives a measure of how much the values of a function of a random
variable x vary as we sample different values of x from its probability distribution:

Var( ( )) = f x E


( ( ) [ ( )])f x − E f x

2

. (3.12)

When the variance is low, the values of f (x) cluster near their expected value. The
square root of the variance is known as the .standard deviation

The covariance gives some sense of how much two values are linearly related
to each other, as well as the scale of these variables:

Cov( ( ) ( )) = [( ( ) [ ( )]) ( ( ) [ ( )])]f x , g y E f x − E f x g y − E g y . (3.13)

High absolute values of the covariance mean that the values change very much
and are both far from their respective means at the same time. If the sign of the
covariance is positive, then both variables tend to take on relatively high values
simultaneously. If the sign of the covariance is negative, then one variable tends to
take on a relatively high value at the times that the other takes on a relatively
low value and vice versa. Other measures such as correlation normalize the
contribution of each variable in order to measure only how much the variables are
related, rather than also being affected by the scale of the separate variables.

The notions of covariance and dependence are related but distinct concepts.
They are related because two variables that are independent have zero covariance,
and two variables that have nonzero covariance are dependent. Independence,
however, is a distinct property from covariance. For two variables to have zero
covariance, there must be no linear dependence between them. Independence is
a stronger requirement than zero covariance, because independence also excludes
nonlinear relationships. It is possible for two variables to be dependent but have
zero covariance. For example, suppose we first sample a real number x from a
uniform distribution over the interval [−1,1]. We next sample a random variable s.
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With probability 1
2 , we choose the value of s to be . Otherwise, we choose the1

value of s to be −1. We can then generate a random variable y by assigning
y = sx. Clearly, x and y are not independent, because x completely determines
the magnitude of . However, .y Cov( ) = 0x, y

The covariance matrix of a random vector x ∈ R
n is an n n× matrix, such

that
Cov( )x i,j = Cov(xi, x j). (3.14)

The diagonal elements of the covariance give the variance:

Cov(xi , xi) = Var(xi ). (3.15)

3.9 Common Probability Distributions

Several simple probability distributions are useful in many contexts in machine
learning.

3.9.1 Bernoulli Distribution

The Bernoulli distribution is a distribution over a single binary random variable.
It is controlled by a single parameter φ ∈ [0,1], which gives the probability of the
random variable being equal to 1. It has the following properties:

P φ( = 1) = x (3.16)

P φ( = 0) = 1x − (3.17)

P x φ( = x ) = x(1 )− φ 1−x (3.18)

Ex[ ] = x φ (3.19)

Varx( ) = (1 )x φ − φ (3.20)

3.9.2 Multinoulli Distribution

The multinoulli , or categorical, distribution is a distribution over a single dis-
crete variable with k different states, where k is finite. 1 The multinoulli distribution

1
“Multinoulli” is a term that was recently coined by Gustavo Lacerda and popularized by

Murphy 2012( ). The multinoulli distribution is a special case of the multinomial distribution.

A multinomial distribution is the distribution over vectors in {0, . . . , n}k representing how many

times each of the k categories is visited when n samples are drawn from a multinoulli distribution.

Many texts use the term “multinomial” to refer to multinoulli distributions without clarifying

that they are referring only to the case.n = 1
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is parametrized by a vector p ∈ [0, 1]k−1 , where pi gives the probability of the
i-th state. The final, k-th state’s probability is given by 1 − 1p. Note that
we must constrain 1p ≤ 1. Multinoulli distributions are often used to refer to
distributions over categories of objects, so we do not usually assume that state
1 has numerical value 1, and so on. For this reason, we do not usually need to
compute the expectation or variance of multinoulli-distributed random variables.

The Bernoulli and multinoulli distributions are sufficient to describe any distri-
bution over their domain. They are able to describe any distribution over their
domain not so much because they are particularly powerful but rather because their
domain is simple; they model discrete variables for which it is feasible to enumerate
all the states. When dealing with continuous variables, there are uncountably
many states, so any distribution described by a small number of parameters must
impose strict limits on the distribution.

3.9.3 Gaussian Distribution

The most commonly used distribution over real numbers is the normal distribu-

tion, also known as the :Gaussian distribution

N ( ;x µ,σ2) =


1

2πσ2
exp


− 1

2σ2
( )x µ− 2


. (3.21)

See figure for a plot of the normal distribution density function.3.1

The two parameters µ ∈ R and σ ∈ (0,∞) control the normal distribution.
The parameter µ gives the coordinate of the central peak. This is also the mean of
the distribution: E[x] = µ. The standard deviation of the distribution is given by
σ, and the variance by σ2.

When we evaluate the PDF, we need to square and invert σ. When we need to
frequently evaluate the PDF with different parameter values, a more efficient way
of parametrizing the distribution is to use a parameter β ∈ (0,∞) to control the
precision, or inverse variance, of the distribution:

N ( ;x µ,β−1) =


β

2π
exp


−1

2
β x µ( − )2


. (3.22)

Normal distributions are a sensible choice for many applications. In the absence
of prior knowledge about what form a distribution over the real numbers should
take, the normal distribution is a good default choice for two major reasons.
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Figure 3.1: The normal distribution. The normal distribution N (x ;µ, σ2) exhibits a classic
“bell curve” shape, with the x coordinate of its central peak given by µ, and the width of
its peak controlled by σ. In this example, we depict the standard normal distribution,
with and .µ = 0 σ = 1

First, many distributions we wish to model are truly close to being normal
distributions. The central limit theorem shows that the sum of many indepen-
dent random variables is approximately normally distributed. This means that
in practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the
real numbers. We can thus think of the normal distribution as being the one
that inserts the least amount of prior knowledge into a model. Fully developing
and justifying this idea requires more mathematical tools and is postponed to
section .19.4.2

The normal distribution generalizes to R
n, in which case it is known as the

multivariate normal distribution. It may be parametrized with a positive
definite symmetric matrix :Σ

N ( ; ) =x µ,Σ



1

(2 )π ndet( )Σ
exp



−1

2
( )x µ− Σ−1( )x µ−



. (3.23)
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The parameter µ still gives the mean of the distribution, though now it is
vector valued. The parameter Σ gives the covariance matrix of the distribution.
As in the univariate case, when we wish to evaluate the PDF several times for
many different values of the parameters, the covariance is not a computationally
efficient way to parametrize the distribution, since we need to invert Σ to evaluate
the PDF. We can instead use a :precision matrix β

N ( ;x µ β, −1) =


det( )β

(2 )π n
exp


− 1

2
( )x µ− β x µ( − )


. (3.24)

We often fix the covariance matrix to be a diagonal matrix. An even simpler
version is the isotropic Gaussian distribution, whose covariance matrix is a scalar
times the identity matrix.

3.9.4 Exponential and Laplace Distributions

In the context of deep learning, we often want to have a probability distribution
with a sharp point at x = 0. To accomplish this, we can use the exponential
distribution:

p x λ λ( ; ) = 1x≥0 exp ( )−λx . (3.25)

The exponential distribution uses the indicator function 1x≥0 to assign probability
zero to all negative values of .x

A closely related probability distribution that allows us to place a sharp peak
of probability mass at an arbitrary point is theµ Laplace distribution

Laplace( ; ) =x µ,γ
1

2γ
exp


− | − |x µ

γ


. (3.26)

3.9.5 The Dirac Distribution and Empirical Distribution

In some cases, we wish to specify that all the mass in a probability distribution
clusters around a single point. This can be accomplished by defining a PDF using
the , :Dirac delta function δ x( )

p x δ x µ .( ) = ( − ) (3.27)

The Dirac delta function is defined such that it is zero valued everywhere except
0, yet integrates to 1. The Dirac delta function is not an ordinary function that
associates each value x with a real-valued output; instead it is a different kind of
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mathematical object called a generalized function that is defined in terms of
its properties when integrated. We can think of the Dirac delta function as being
the limit point of a series of functions that put less and less density on all points
other than zero.

By defining p(x) to be δ shifted by −µ we obtain an infinitely narrow and
infinitely high peak of probability density where .x µ= 

A common use of the Dirac delta distribution is as a component of an empirical

distribution,

p̂( ) =x
1

m

m

i=1

δ(x x− ( )i ) (3.28)

which puts probability mass 1
m on each of the m points x(1) , . . . ,x( )m , forming

a given data set or collection of samples. The Dirac delta distribution is only
necessary to define the empirical distribution over continuous variables. For discrete
variables, the situation is simpler: an empirical distribution can be conceptualized
as a multinoulli distribution, with a probability associated with each possible
input value that is simply equal to the empirical frequency of that value in the
training set.

We can view the empirical distribution formed from a dataset of training
examples as specifying the distribution that we sample from when we train a model
on this dataset. Another important perspective on the empirical distribution is
that it is the probability density that maximizes the likelihood of the training data
(see section ).5.5

3.9.6 Mixtures of Distributions

It is also common to define probability distributions by combining other simpler
probability distributions. One common way of combining distributions is to
construct a mixture distribution. A mixture distribution is made up of several
component distributions. On each trial, the choice of which component distribution
should generate the sample is determined by sampling a component identity from
a multinoulli distribution:

P ( ) =x


i

P i P i ,( = c ) ( = x c| ) (3.29)

where c is the multinoulli distribution over component identities.P ( )

We have already seen one example of a mixture distribution: the empirical
distribution over real-valued variables is a mixture distribution with one Dirac
component for each training example.
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The mixture model is one simple strategy for combining probability distributions
to create a richer distribution. In chapter , we explore the art of building complex16
probability distributions from simple ones in more detail.

The mixture model allows us to briefly glimpse a concept that will be of
paramount importance later—the latent variable. A latent variable is a random
variable that we cannot observe directly. The component identity variable c of the
mixture model provides an example. Latent variables may be related to x through
the joint distribution, in this case, P(x c, ) = P (x c| )P (c). The distribution P(c)
over the latent variable and the distribution P (x c| ) relating the latent variables
to the visible variables determines the shape of the distribution P (x), even though
it is possible to describe P (x) without reference to the latent variable. Latent
variables are discussed further in section .16.5

A very powerful and common type of mixture model is the Gaussian mixture
model, in which the components p(x | c = i) are Gaussians. Each component has
a separately parametrized mean µ( )i and covariance Σ( )i . Some mixtures can have
more constraints. For example, the covariances could be shared across components
via the constraint Σ( )i = Σ, i∀ . As with a single Gaussian distribution, the mixture
of Gaussians might constrain the covariance matrix for each component to be
diagonal or isotropic.

In addition to the means and covariances, the parameters of a Gaussian mixture
specify the prior probability αi = P(c = i) given to each component i. The word
“prior” indicates that it expresses the model’s beliefs about c before it has observed
x. By comparison, P(c | x) is a posterior probability, because it is computed
after observation of x. A Gaussian mixture model is a universal approximator

of densities, in the sense that any smooth density can be approximated with
any specific nonzero amount of error by a Gaussian mixture model with enough
components.

Figure shows samples from a Gaussian mixture model.3.2

3.10 Useful Properties of Common Functions

Certain functions arise often while working with probability distributions,
especially the probability distributions used in deep learning models.

One of these functions is the :logistic sigmoid

σ x( ) =
1

1 + exp( )−x
. (3.30)
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x1

x
2

Figure 3.2: Samples from a Gaussian mixture model. In this example, there are three
components. From left to right, the first component has an isotropic covariance matrix,
meaning it has the same amount of variance in each direction. The second has a diagonal
covariance matrix, meaning it can control the variance separately along each axis-aligned
direction. This example has more variance along the x2 axis than along the x1 axis. The
third component has a full-rank covariance matrix, enabling it to control the variance
separately along an arbitrary basis of directions.

The logistic sigmoid is commonly used to produce the φ parameter of a Bernoulli
distribution because its range is (0,1), which lies within the valid range of values
for the φ parameter. See figure for a graph of the sigmoid function. The3.3
sigmoid function saturates when its argument is very positive or very negative,
meaning that the function becomes very flat and insensitive to small changes in its
input.

Another commonly encountered function is the softplus function (Dugas
et al., ):2001

ζ x x .( ) = log (1 + exp( )) (3.31)

The softplus function can be useful for producing the β or σ parameter of a normal
distribution because its range is (0,∞). It also arises commonly when manipulating
expressions involving sigmoids. The name of the softplus function comes from the
fact that it is a smoothed, or “softened,” version of

x+ = max(0 ), x . (3.32)

See figure for a graph of the softplus function.3.4

The following properties are all useful enough that you may wish to memorize
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Figure 3.3: The logistic sigmoid function.
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Figure 3.4: The softplus function.
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them:

σ x( ) =
exp( )x

exp( ) + exp(0)x
(3.33)

d

dx
σ x σ x σ x( ) = ( )(1 − ( )) (3.34)

1 ( ) = ( )− σ x σ −x (3.35)

log ( ) = ( )σ x −ζ −x (3.36)

d

dx
ζ x σ x( ) = ( ) (3.37)

∀ ∈x (0 1), , σ−1 ( ) = logx


x

1 − x


(3.38)

∀x > , ζ0 −1( ) = log (exp( ) 1)x x − (3.39)

ζ x( ) =

 x

−∞
σ y dy( ) (3.40)

ζ x ζ x x( ) − (− ) = (3.41)

The function σ−1(x) is called the logit in statistics, but this term is rarely used in
machine learning.

Equation provides extra justification for the name “softplus.” The softplus3.41
function is intended as a smoothed version of the positive part function, x+ =

max{0, x}. The positive part function is the counterpart of the negative part
function, x− = max{0, x− }. To obtain a smooth function that is analogous to
the negative part, one can use ζ(−x). Just as x can be recovered from its positive
part and its negative part via the identity x+−x− = x, it is also possible to recover
x using the same relationship between ζ(x) and ζ(−x), as shown in equation .3.41

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P(y x| ) and need to know
P (x y| ). Fortunately, if we also know P (x), we can compute the desired quantity
using Bayes’ rule:

P ( ) =x y| P P( )x ( )y x|
P ( )y

. (3.42)

Note that while P (y) appears in the formula, it is usually feasible to compute
P ( ) =y



x P x P x P(y | ) ( ), so we do not need to begin with knowledge of ( )y .
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Bayes’ rule is straightforward to derive from the definition of conditional
probability, but it is useful to know the name of this formula since many texts
refer to it by name. It is named after the Reverend Thomas Bayes, who first
discovered a special case of the formula. The general version presented here was
independently discovered by Pierre-Simon Laplace.

3.12 Technical Details of Continuous Variables

A proper formal understanding of continuous random variables and probability
density functions requires developing probability theory in terms of a branch of
mathematics known as measure theory. Measure theory is beyond the scope of
this textbook, but we can briefly sketch some of the issues that measure theory is
employed to resolve.

In section , we saw that the probability of a continuous vector-valued3.3.2 x

lying in some set S is given by the integral of p(x) over the set S. Some choices
of set S can produce paradoxes. For example, it is possible to construct two
sets S1 and S2 such that p(x ∈ S1) + p(x ∈ S2) > 1 but S1 ∩ S2 = ∅. These
sets are generally constructed making very heavy use of the infinite precision of
real numbers, for example by making fractal-shaped sets or sets that are defined
by transforming the set of rational numbers.2 One of the key contributions of
measure theory is to provide a characterization of the set of sets we can compute
the probability of without encountering paradoxes. In this book, we integrate only
over sets with relatively simple descriptions, so this aspect of measure theory never
becomes a relevant concern.

For our purposes, measure theory is more useful for describing theorems that
apply to most points in R

n but do not apply to some corner cases. Measure theory
provides a rigorous way of describing that a set of points is negligibly small. Such
a set is said to have measure zero. We do not formally define this concept in this
textbook. For our purposes, it is sufficient to understand the intuition that a set
of measure zero occupies no volume in the space we are measuring. For example,
within R

2, a line has measure zero, while a filled polygon has positive measure.
Likewise, an individual point has measure zero. Any union of countably many sets
that each have measure zero also has measure zero (so the set of all the rational
numbers has measure zero, for instance).

Another useful term from measure theory is almost everywhere. A property
that holds almost everywhere holds throughout all space except for on a set of

2
The Banach-Tarski theorem provides a fun example of such sets.
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measure zero. Because the exceptions occupy a negligible amount of space, they
can be safely ignored for many applications. Some important results in probability
theory hold for all discrete values but hold “almost everywhere” only for continuous
values.

Another technical detail of continuous variables relates to handling continuous
random variables that are deterministic functions of one another. Suppose we have
two random variables, x and y, such that y = g(x), where g is an invertible, con-
tinuous, differentiable transformation. One might expect that py (y) = px(g

−1(y )).
This is actually not the case.

As a simple example, suppose we have scalar random variables x and y. Suppose
y = x

2
and x ∼ U (0, 1). If we use the rule py (y) = px(2y) then py will be 0

everywhere except the interval [0, 12 ] 1, and it will be on this interval. This means


py ( ) =y dy
1

2
, (3.43)

which violates the definition of a probability distribution. This is a common mistake.
The problem with this approach is that it fails to account for the distortion of
space introduced by the function g. Recall that the probability of x lying in an
infinitesimally small region with volume δx is given by p (x )δx. Since g can expand
or contract space, the infinitesimal volume surrounding x in x space may have
different volume in space.y

To see how to correct the problem, we return to the scalar case. We need to
preserve the property

|py( ( )) = g x dy| |px( )x dx .| (3.44)

Solving from this, we obtain

py( ) = y px (g−1( ))y


∂x

∂y

 (3.45)

or equivalently

px( ) = x py( ( ))g x


∂g x( )

∂x

. (3.46)

In higher dimensions, the derivative generalizes to the determinant of the Jacobian
matrix—the matrix with Ji,j = ∂xi

∂yj
. Thus, for real-valued vectors and ,x y

px( ) = x py ( ( ))g x



det



∂g( )x

∂x



. (3.47)
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3.13 Information Theory

Information theory is a branch of applied mathematics that revolves around
quantifying how much information is present in a signal. It was originally invented
to study sending messages from discrete alphabets over a noisy channel, such as
communication via radio transmission. In this context, information theory tells how
to design optimal codes and calculate the expected length of messages sampled from
specific probability distributions using various encoding schemes. In the context of
machine learning, we can also apply information theory to continuous variables
where some of these message length interpretations do not apply. This field is
fundamental to many areas of electrical engineering and computer science. In this
textbook, we mostly use a few key ideas from information theory to characterize
probability distributions or to quantify similarity between probability distributions.
For more detail on information theory, see Cover and Thomas 2006 MacKay( ) or
( ).2003

The basic intuition behind information theory is that learning that an unlikely
event has occurred is more informative than learning that a likely event has
occurred. A message saying “the sun rose this morning” is so uninformative as
to be unnecessary to send, but a message saying “there was a solar eclipse this
morning” is very informative.

We would like to quantify information in a way that formalizes this intuition.

• Likely events should have low information content, and in the extreme case,
events that are guaranteed to happen should have no information content
whatsoever.

• Less likely events should have higher information content.

• Independent events should have additive information. For example, finding
out that a tossed coin has come up as heads twice should convey twice as
much information as finding out that a tossed coin has come up as heads
once.

To satisfy all three of these properties, we define the self-information of an
event x to be= x

I x P x .( ) = log− ( ) (3.48)

In this book, we always use log to mean the natural logarithm, with base e. Our
definition of I(x) is therefore written in units of nats. One nat is the amount of
information gained by observing an event of probability 1

e . Other texts use base-2
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logarithms and units called bits or shannons; information measured in bits is
just a rescaling of information measured in nats.

When x is continuous, we use the same definition of information by analogy,
but some of the properties from the discrete case are lost. For example, an event
with unit density still has zero information, despite not being an event that is
guaranteed to occur.

Self-information deals only with a single outcome. We can quantify the amount
of uncertainty in an entire probability distribution using the Shannon entropy,

H( ) = x Ex∼P [ ( )] = I x −Ex∼P [log ( )]P x , (3.49)

also denoted H(P). In other words, the Shannon entropy of a distribution is the
expected amount of information in an event drawn from that distribution. It gives
a lower bound on the number of bits (if the logarithm is base 2, otherwise the units
are different) needed on average to encode symbols drawn from a distribution P.
Distributions that are nearly deterministic (where the outcome is nearly certain)
have low entropy; distributions that are closer to uniform have high entropy. See
figure for a demonstration. When3.5 x is continuous, the Shannon entropy is
known as the differential entropy.

If we have two separate probability distributions P (x) andQ (x) over the same
random variable x, we can measure how different these two distributions are using
the Kullback-Leibler (KL) divergence:

DKL( ) = P Q Ex∼P


log

P x( )

Q x( )


= Ex∼P [log ( ) log ( )]P x − Q x . (3.50)

In the case of discrete variables, it is the extra amount of information (measured
in bits if we use the base- logarithm, but in machine learning we usually use nats2
and the natural logarithm) needed to send a message containing symbols drawn
from probability distribution P , when we use a code that was designed to minimize
the length of messages drawn from probability distribution .Q

The KL divergence has many useful properties, most notably being non-negative.
The KL divergence is 0 if and only if P and Q are the same distribution in the
case of discrete variables, or equal “almost everywhere” in the case of continuous
variables. Because the KL divergence is non-negative and measures the difference
between two distributions, it is often conceptualized as measuring some sort of
distance between these distributions. It is not a true distance measure because it
is not symmetric: DKL(P Q )


= DKL(Q P ) for some P and Q . This asymmetry

means that there are important consequences to the choice of whether to use
DKL( )P Q or DKL( )Q P . See figure for more detail.3.6
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Figure 3.5: Shannon entropy of a binary random variable. This plot shows how distri-
butions that are closer to deterministic have low Shannon entropy while distributions
that are close to uniform have high Shannon entropy. On the horizontal axis, we plot
p, the probability of a binary random variable being equal to . The entropy is given1
by (p− 1) log(1 − p) − p plog . When p is near 0, the distribution is nearly deterministic,
because the random variable is nearly always 0. When p is near 1, the distribution is
nearly deterministic, because the random variable is nearly always 1. When p = 0.5, the
entropy is maximal, because the distribution is uniform over the two outcomes.

A quantity that is closely related to the KL divergence is the cross-entropy
H(P,Q) = H (P ) + DKL(P Q ), which is similar to the KL divergence but lacking
the term on the left:

H P,Q( ) = −Ex∼P log ( )Q x . (3.51)

Minimizing the cross-entropy with respect to Q is equivalent to minimizing the
KL divergence, because does not participate in the omitted term.Q

When computing many of these quantities, it is common to encounter expres-
sions of the form 0 log0. By convention, in the context of information theory, we
treat these expressions as limx→0 x xlog = 0.

3.14 Structured Probabilistic Models

Machine learning algorithms often involve probability distributions over a very
large number of random variables. Often, these probability distributions involve
direct interactions between relatively few variables. Using a single function to
describe the entire joint probability distribution can be very inefficient (both
computationally and statistically).
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Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution q(x). We have the choice of minimizing
either DKL(p q ) or DKL(q p ). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left)The effect of minimizing DKL(p q ). In this case, we select a q that has
high probability where p has high probability. When p has multiple modes, q chooses to
blur the modes together, in order to put high probability mass on all of them. (Right)The
effect of minimizing DKL(q p ). In this case, we select a q that has low probability where p
has low probability. When p has multiple modes that are sufficiently widely separated, as
in this figure, the KL divergence is minimized by choosing a single mode, to avoid putting
probability mass in the low-probability areas between modes of p. Here, we illustrate
the outcome when q is chosen to emphasize the left mode. We could also have achieved
an equal value of the KL divergence by choosing the right mode. If the modes are not
separated by a sufficiently strong low-probability region, then this direction of the KL
divergence can still choose to blur the modes.
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Instead of using a single function to represent a probability distribution, we
can split a probability distribution into many factors that we multiply together.
For example, suppose we have three random variables: a, b and c. Suppose that
a influences the value of b, and b influences the value of c, but that a and c are
independent given b. We can represent the probability distribution over all three
variables as a product of probability distributions over two variables:

p , , p p p .(a b c) = ( )a ( )b a| ( )c b| (3.52)

These factorizations can greatly reduce the number of parameters needed
to describe the distribution. Each factor uses a number of parameters that is
exponential in the number of variables in the factor. This means that we can greatly
reduce the cost of representing a distribution if we are able to find a factorization
into distributions over fewer variables.

We can describe these kinds of factorizations using graphs. Here, we use the
word “graph” in the sense of graph theory: a set of vertices that may be connected
to each other with edges. When we represent the factorization of a probability
distribution with a graph, we call it a structured probabilistic model, or
graphical model.

There are two main kinds of structured probabilistic models: directed and
undirected. Both kinds of graphical models use a graph G in which each node
in the graph corresponds to a random variable, and an edge connecting two
random variables means that the probability distribution is able to represent direct
interactions between those two random variables.

Directed models use graphs with directed edges, and they represent fac-
torizations into conditional probability distributions, as in the example above.
Specifically, a directed model contains one factor for every random variable xi in
the distribution, and that factor consists of the conditional distribution over xi
given the parents of xi, denoted PaG(x i):

p( ) =x


i

p (xi | PaG(xi)) . (3.53)

See figure for an example of a directed graph and the factorization of probability3.7
distributions it represents.

Undirected models use graphs with undirected edges, and they represent
factorizations into a set of functions; unlike in the directed case, these functions
are usually not probability distributions of any kind. Any set of nodes that are all
connected to each other in G is called a clique. Each clique C ( )i in an undirected
model is associated with a factor φ( )i (C( )i ). These factors are just functions, not
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Figure 3.7: A directed graphical model over random variables a, b, c, d and e. This graph
corresponds to probability distributions that can be factored as

p , , , , p p p , p p .(a b c d e) = ( )a ( )b a| (c a| b) ( )d b| ( )e c| (3.54)

This graphical model enables us to quickly see some properties of the distribution. For
example, a and c interact directly, but a and e interact only indirectly via c.

probability distributions. The output of each factor must be non-negative, but
there is no constraint that the factor must sum or integrate to 1 like a probability
distribution.

The probability of a configuration of random variables is proportional to the
product of all these factors—assignments that result in larger factor values are
more likely. Of course, there is no guarantee that this product will sum to 1. We
therefore divide by a normalizing constant Z, defined to be the sum or integral
over all states of the product of the φ functions, in order to obtain a normalized
probability distribution:

p( ) =x
1

Z



i

φ( )i


C( )i

. (3.55)

See figure for an example of an undirected graph and the factorization of3.8
probability distributions it represents.

Keep in mind that these graphical representations of factorizations are a
language for describing probability distributions. They are not mutually exclusive
families of probability distributions. Being directed or undirected is not a property
of a probability distribution; it is a property of a particular description of a
probability distribution, but any probability distribution may be described in both
ways.

Throughout parts and of this book, we use structured probabilistic modelsI II
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Figure 3.8: An undirected graphical model over random variables a, b, c, d and e. This
graph corresponds to probability distributions that can be factored as

p , , , ,(a b c d e) =
1

Z
φ(1)( )a b c, , φ(2)( )b d, φ(3)( )c e, . (3.56)

This graphical model enables us to quickly see some properties of the distribution. For
example, a and c interact directly, but a and e interact only indirectly via c.

merely as a language to describe which direct probabilistic relationships different
machine learning algorithms choose to represent. No further understanding of
structured probabilistic models is needed until the discussion of research topics, in
part , where we explore structured probabilistic models in much greater detail.III

This chapter has reviewed the basic concepts of probability theory that are
most relevant to deep learning. One more set of fundamental mathematical tools
remains: numerical methods.
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