
Chapter 2

Linear Algebra

Linear algebra is a branch of mathematics that is widely used throughout science
and engineering. Yet because linear algebra is a form of continuous rather than
discrete mathematics, many computer scientists have little experience with it. A
good understanding of linear algebra is essential for understanding and working
with many machine learning algorithms, especially deep learning algorithms. We
therefore precede our introduction to deep learning with a focused presentation of
the key linear algebra prerequisites.

If you are already familiar with linear algebra, feel free to skip this chapter. If
you have previous experience with these concepts but need a detailed reference
sheet to review key formulas, we recommend The Matrix Cookbook (Petersen and
Pedersen 2006,). If you have had no exposure at all to linear algebra, this chapter
will teach you enough to read this book, but we highly recommend that you also
consult another resource focused exclusively on teaching linear algebra, such as
Shilov 1977(). This chapter completely omits many important linear algebra topics
that are not essential for understanding deep learning.

2.1 Scalars, Vectors, Matrices and Tensors

The study of linear algebra involves several types of mathematical objects:

• Scalars: A scalar is just a single number, in contrast to most of the other
objects studied in linear algebra, which are usually arrays of multiple numbers.
We write scalars in italics. We usually give scalars lowercase variable names.
When we introduce them, we specify what kind of number they are. For

29

CHAPTER 2. LINEAR ALGEBRA

example, we might say “Let s ∈ R be the slope of the line,” while defining a
real-valued scalar, or “Let n ∈ N be the number of units,” while defining a
natural number scalar.

• Vectors: A vector is an array of numbers. The numbers are arranged in
order. We can identify each individual number by its index in that ordering.
Typically we give vectors lowercase names in bold typeface, such as x. The
elements of the vector are identified by writing its name in italic typeface,
with a subscript. The first element of x is x1, the second element is x2, and
so on. We also need to say what kind of numbers are stored in the vector. If
each element is in R, and the vector has n elements, then the vector lies in
the set formed by taking the Cartesian product of R n times, denoted as Rn.
When we need to explicitly identify the elements of a vector, we write them
as a column enclosed in square brackets:

x =





x1
x2
...
xn




. (2.1)

We can think of vectors as identifying points in space, with each element
giving the coordinate along a different axis.

Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access x1, x3 and x6, we define the set S = {1,3, 6} and write
xS. We use the − sign to index the complement of a set. For example x−1 is
the vector containing all elements of x except for x1, and x−S is the vector
containing all elements of except forx x1, x3 and x6.

• Matrices: A matrix is a 2-D array of numbers, so each element is identified
by two indices instead of just one. We usually give matrices uppercase
variable names with bold typeface, such as A. If a real-valued matrix A has
a height of m and a width of n, then we say that A ∈ R

m n× . We usually
identify the elements of a matrix using its name in italic but not bold font,
and the indices are listed with separating commas. For example, A1 1, is the
upper left entry of A and Am,n is the bottom right entry. We can identify
all the numbers with vertical coordinate i by writing a “ ” for the horizontal:
coordinate. For example, Ai,: denotes the horizontal cross section of A with
vertical coordinate i. This is known as the i-th row of A. Likewise, A:,i is

30

CHAPTER 2. LINEAR ALGEBRA

the -th of . When we need to explicitly identify the elements ofi column A
a matrix, we write them as an array enclosed in square brackets:


A1 1, A1 2,

A2 1, A2 2,


. (2.2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression but do not
convert anything to lowercase. For example, f (A)i,j gives element (i, j) of
the matrix computed by applying the function to .f A

• Tensors: In some cases we will need an array with more than two axes.
In the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named “A”
with this typeface: A. We identify the element of A at coordinates (i, j, k)

by writing Ai,j,k.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
figure for a graphical depiction of this operation. We denote the transpose of a2.1
matrix asA A, and it is defined such that

(A)i,j = Aj,i. (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we

A =



A1 1, A1 2,

A2 1, A2 2,

A3 1, A3 2, 
⇒ A =

A1 1, A2 1, A3 1,

A1 2, A2 2, A3 2,

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

31

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix, then
using the transpose operator to turn it into a standard column vector, for example
x = [x1, x2, x3].

A scalar can be thought of as a matrix with only a single entry. From this, we
can see that a scalar is its own transpose: a a= .

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: whereC A B= + Ci,j = Ai,j + Bi,j.

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a ·B + c where
Di,j = a B· i,j + c.

In the context of deep learning, we also use some less conventional notation. We
allow the addition of a matrix and a vector, yielding another matrix: C =A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called .broadcasting

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In
order for this product to be defined, A must have the same number of columns as
B has rows. If A is of shape m n× and B is of shape n p× , then C is of shape
m p× . We can write the matrix product just by placing two or more matrices
together, for example,

C AB= . (2.4)

The product operation is defined by

Ci,j =


k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is just a matrix containingnot
the product of the individual elements. Such an operation exists and is called the
element-wise product Hadamard product, or , and is denoted as .A B

The dot product between two vectors x and y of the same dimensionality
is the matrix product xy. We can think of the matrix product C = AB as
computing Ci,j as the dot product between row of and column of .i A j B

32

CHAPTER 2. LINEAR ALGEBRA

Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A B C AB AC(+) = + . (2.6)

It is also associative:
A BC AB C() = () . (2.7)

Matrix multiplication is commutative (the conditionnot AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

xy y= x. (2.8)

The transpose of a matrix product has a simple form:

()AB  = BA. (2.9)

This enables us to demonstrate equation by exploiting the fact that the value2.8
of such a product is a scalar and therefore equal to its own transpose:

xy =

xy


= yx. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax b= (2.11)

where A ∈ R
m n× is a known matrix, b ∈ R

m is a known vector, and x ∈ R
n is a

vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite equation as2.11

A1 :, x = b1 (2.12)

A2 :, x = b2 (2.13)

. . . (2.14)

Am,:x = bm (2.15)

or even more explicitly as

A1 1, x1 +A1 2, x2 + +· · · A1,nxn = b1 (2.16)

33

CHAPTER 2. LINEAR ALGEBRA

A2 1, x1 +A2 2, x2 + +· · · A2,nxn = b2 (2.17)

. . . (2.18)

Am,1x1 +Am,2x2 + +· · · Am,nxn = bm . (2.19)

Matrix-vector product notation provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matrix inversion that enables us to
analytically solve equation for many values of .2.11 A

To describe matrix inversion, we first need to define the concept of an identity
matrix. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as In. Formally, In ∈ R

n n× , and

∀ ∈x R
n, Inx x= . (2.20)

The structure of the identity matrix is simple: all the entries along the main
diagonal are 1, while all the other entries are zero. See figure for an example.2.2

The matrix inverse of A is denoted as A−1, and it is defined as the matrix
such that

A−1A I= n . (2.21)

We can now solve equation using the following steps:2.11

Ax b= (2.22)

A−1Ax A= −1b (2.23)

Inx A= −1b (2.24)




1 0 0
0 1 0
0 0 1





Figure 2.2: Example identity matrix: This is I3.

34

CHAPTER 2. LINEAR ALGEBRA

x A= −1b. (2.25)

Of course, this process depends on it being possible to find A−1. We discuss
the conditions for the existence of A−1 in the following section.

When A−1 exists, several different algorithms can find it in closed form. In
theory, the same inverse matrix can then be used to solve the equation many times
for different values of b . A−1 is primarily useful as a theoretical tool, however, and
should not actually be used in practice for most software applications. BecauseA−1

can be represented with only limited precision on a digital computer, algorithms
that make use of the value of can usually obtain more accurate estimates of .b x

2.4 Linear Dependence and Span

For A−1 to exist, equation must have exactly one solution for every value of2.11
b. It is also possible for the system of equations to have no solutions or infinitely
many solutions for some values of b. It is not possible, however, to have more than
one but less than infinitely many solutions for a particular b; if both x and y are
solutions, then

z x y= α + (1)− α (2.26)

is also a solution for any real .α

To analyze how many solutions the equation has, think of the columns of A as
specifying different directions we can travel in from the origin (the point specified
by the vector of all zeros), then determine how many ways there are of reaching b.
In this view, each element of x specifies how far we should travel in each of these
directions, with xi specifying how far to move in the direction of column :i

Ax =


i

xiA:,i. (2.27)

In general, this kind of operation is called a linear combination. Formally, a
linear combination of some set of vectors {v(1) , . . . ,v()n } is given by multiplying
each vector v ()i by a corresponding scalar coefficient and adding the results:



i

civ
()i . (2.28)

The span of a set of vectors is the set of all points obtainable by linear combination
of the original vectors.

35

CHAPTER 2. LINEAR ALGEBRA

Determining whether Ax= b has a solution thus amounts to testing whether b
is in the span of the columns of A. This particular span is known as the column
space range, or the , of .A

In order for the system Ax = b to have a solution for all values of b ∈ R
m ,

we therefore require that the column space of A be all of Rm. If any point in R
m

is excluded from the column space, that point is a potential value of b that has
no solution. The requirement that the column space of A be all of Rm implies
immediately that A must have at least m columns, that is, n m≥ . Otherwise, the
dimensionality of the column space would be less than m. For example, consider a
3 × 2 matrix. The target b is 3-D, but x is only 2-D, so modifying the value of x
at best enables us to trace out a 2-D plane within R

3. The equation has a solution
if and only if lies on that plane.b

Having n m≥ is only a necessary condition for every point to have a solution.
It is not a sufficient condition, because it is possible for some of the columns to
be redundant. Consider a 2 × 2 matrix where both of the columns are identical.
This has the same column space as a 2 × 1 matrix containing only one copy of the
replicated column. In other words, the column space is still just a line and fails to
encompass all of R2, even though there are two columns.

Formally, this kind of redundancy is known as linear dependence. A set of
vectors is linearly independent if no vector in the set is a linear combination
of the other vectors. If we add a vector to a set that is a linear combination of
the other vectors in the set, the new vector does not add any points to the set’s
span. This means that for the column space of the matrix to encompass all of Rm ,
the matrix must contain at least one set of m linearly independent columns. This
condition is both necessary and sufficient for equation to have a solution for2.11
every value of b. Note that the requirement is for a set to have exactly m linearly
independent columns, not at least m. No set of m-dimensional vectors can have
more than m mutually linearly independent columns, but a matrix with more than
m columns may have more than one such set.

For the matrix to have an inverse, we additionally need to ensure that equa-
tion has one solution for each value of2.11 at most b . To do so, we need to make
certain that the matrix has at most m columns. Otherwise there is more than one
way of parametrizing each solution.

Together, this means that the matrix must be square, that is, we require that
m = n and that all the columns be linearly independent. A square matrix with
linearly dependent columns is known as .singular

If A is not square or is square but singular, solving the equation is still possible,
but we cannot use the method of matrix inversion to find the solution.

36

CHAPTER 2. LINEAR ALGEBRA

So far we have discussed matrix inverses as being multiplied on the left. It is
also possible to define an inverse that is multiplied on the right:

AA−1 = I. (2.29)

For square matrices, the left inverse and right inverse are equal.

2.5 Norms

Sometimes we need to measure the size of a vector. In machine learning, we usually
measure the size of vectors using a function called a norm. Formally, the Lp norm
is given by

|| ||x p =




i

|xi|p
 1

p

(2.30)

for p , p .∈ R ≥ 1

Norms, including the Lp norm, are functions mapping vectors to non-negative
values. On an intuitive level, the norm of a vector x measures the distance from
the origin to the point x. More rigorously, a norm is any function f that satisfies
the following properties:

• ⇒f () = 0 x x = 0

• ≤f (+) x y f f() +x ()y (the triangle inequality)

• ∀ ∈ | |α R, f α(x) = α f()x

The L2 norm, with p = 2, is known as the Euclidean norm, which is simply
the Euclidean distance from the origin to the point identified by x. The L2 norm
is used so frequently in machine learning that it is often denoted simply as || ||x ,
with the subscript omitted. It is also common to measure the size of a vector2
using the squared L2 norm, which can be calculated simply as xx.

The squared L2 norm is more convenient to work with mathematically and
computationally than the L2 norm itself. For example, each derivative of the
squared L2 norm with respect to each element of x depends only on the corre-
sponding element of x, while all the derivatives of the L2 norm depend on the
entire vector. In many contexts, the squared L2 norm may be undesirable because
it increases very slowly near the origin. In several machine learning applications, it
is important to discriminate between elements that are exactly zero and elements
that are small but nonzero. In these cases, we turn to a function that grows at the

37

CHAPTER 2. LINEAR ALGEBRA

same rate in all locations, but that retains mathematical simplicity: the L1 norm.
The L1 norm may be simplified to

|| ||x 1 =


i

|xi |. (2.31)

The L1 norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of x moves
away from 0 by , the L1 norm increases by .

We sometimes measure the size of the vector by counting its number of nonzero
elements. Some authors refer to this function as the “L0 norm,” but this is incorrect
terminology. The number of nonzero entries in a vector is not a norm, because
scaling the vector by α does not change the number of nonzero entries. The L1

norm is often used as a substitute for the number of nonzero entries.

One other norm that commonly arises in machine learning is the L∞ norm,
also known as the max norm. This norm simplifies to the absolute value of the
element with the largest magnitude in the vector,

|| ||x ∞ = max
i

|xi |. (2.32)

Sometimes we may also wish to measure the size of a matrix. In the context
of deep learning, the most common way to do this is with the otherwise obscure
Frobenius norm:

|| ||A F =



i,j

A2
i,j, (2.33)

which is analogous to the L2 norm of a vector.

The dot product of two vectors can be rewritten in terms of norms. Specifically,

xy x= || ||2|| ||y 2 cos θ, (2.34)

where is the angle between and .θ x y

2.6 Special Kinds of Matrices and Vectors

Some special kinds of matrices and vectors are particularly useful.

Diagonal matrices consist mostly of zeros and have nonzero entries only along
the main diagonal. Formally, a matrix D is diagonal if and only if Di,j = 0 for
all i = j. We have already seen one example of a diagonal matrix: the identity

38

CHAPTER 2. LINEAR ALGEBRA

matrix, where all the diagonal entries are 1. We write diag(v) to denote a square
diagonal matrix whose diagonal entries are given by the entries of the vector v.
Diagonal matrices are of interest in part because multiplying by a diagonal matrix
is computationally efficient. To compute diag(v)x, we only need to scale each
element xi by vi. In other words, diag(v)x= v x . Inverting a square diagonal
matrix is also efficient. The inverse exists only if every diagonal entry is nonzero,
and in that case, diag(v)−1 = diag([1/v1, . . . , 1/vn]). In many cases, we may
derive some general machine learning algorithm in terms of arbitrary matrices
but obtain a less expensive (and less descriptive) algorithm by restricting some
matrices to be diagonal.

Not all diagonal matrices need be square. It is possible to construct a rectangular
diagonal matrix. Nonsquare diagonal matrices do not have inverses, but we can
still multiply by them cheaply. For a nonsquare diagonal matrix D , the product
Dx will involve scaling each element of x and either concatenating some zeros to
the result, if D is taller than it is wide, or discarding some of the last elements of
the vector, if is wider than it is tall.D

A matrix is any matrix that is equal to its own transpose:symmetric

A A= . (2.35)

Symmetric matrices often arise when the entries are generated by some function of
two arguments that does not depend on the order of the arguments. For example,
ifA is a matrix of distance measurements, with Ai,j giving the distance from point
i jto point , then A i,j = Aj,i because distance functions are symmetric.

A unit vector unit normis a vector with :

|| ||x 2 = 1. (2.36)

A vector x and a vector y are orthogonal to each other if xy = 0. If both
vectors have nonzero norm, this means that they are at a 90 degree angle to each
other. In R

n , at most n vectors may be mutually orthogonal with nonzero norm.
If the vectors not only are orthogonal but also have unit norm, we call them
orthonormal.

An orthogonal matrix is a square matrix whose rows are mutually orthonor-
mal and whose columns are mutually orthonormal:

AA AA=  = I. (2.37)

This implies that
A−1 = A, (2.38)

39

CHAPTER 2. LINEAR ALGEBRA

so orthogonal matrices are of interest because their inverse is very cheap to compute.
Pay careful attention to the definition of orthogonal matrices. Counterintuitively,
their rows are not merely orthogonal but fully orthonormal. There is no special
term for a matrix whose rows or columns are orthogonal but not orthonormal.

2.7 Eigendecomposition

Many mathematical objects can be understood better by breaking them into
constituent parts, or finding some properties of them that are universal, not caused
by the way we choose to represent them.

For example, integers can be decomposed into prime factors. The way we
represent the number will change depending on whether we write it in base ten12
or in binary, but it will always be true that 12 = 2× 2× 3. From this representation
we can conclude useful properties, for example, that is not divisible by , and12 5
that any integer multiple of will be divisible by .12 3

Much as we can discover something about the true nature of an integer by
decomposing it into prime factors, we can also decompose matrices in ways that
show us information about their functional properties that is not obvious from the
representation of the matrix as an array of elements.

One of the most widely used kinds of matrix decomposition is called eigen-
decomposition, in which we decompose a matrix into a set of eigenvectors and
eigenvalues.

An eigenvector of a square matrixA is a nonzero vector v such that multi-
plication by alters only the scale of :A v

Av v= λ . (2.39)

The scalar λ is known as the eigenvalue corresponding to this eigenvector. (One
can also find a left eigenvector such that vA = λv , but we are usually
concerned with right eigenvectors.)

If v is an eigenvector of A, then so is any rescaled vector sv for s , s∈ R = 0.
Moreover, sv still has the same eigenvalue. For this reason, we usually look only
for unit eigenvectors.

Suppose that a matrix A has n linearly independent eigenvectors {v(1) , . . . ,
v()n } with corresponding eigenvalues {λ1, . . . , λn}. We may concatenate all the
eigenvectors to form a matrix V with one eigenvector per column: V = [v (1) , . . . ,
v()n]. Likewise, we can concatenate the eigenvalues to form a vector λ = [λ1 , . . . ,

40

CHAPTER 2. LINEAR ALGEBRA

λn]. The of is then given byeigendecomposition A

A V λ V= diag() −1 . (2.40)

We have seen that constructing matrices with specific eigenvalues and eigen-
vectors enables us to stretch space in desired directions. Yet we often want to
decompose matrices into their eigenvalues and eigenvectors. Doing so can help
us analyze certain properties of the matrix, much as decomposing an integer into
its prime factors can help us understand the behavior of that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In some
cases, the decomposition exists but involves complex rather than real numbers.
Fortunately, in this book, we usually need to decompose only a specific class of

󰤓 󰤓 󰤓    


󰤓

󰤓

󰤓














 



󰤓 󰤓 󰤓    
 



󰤓

󰤓

󰤓










 















Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have
a matrix A with two orthonormal eigenvectors, v(1) with eigenvalue λ1 and v(2) with
eigenvalue λ2. (Left)We plot the set of all unit vectors u ∈ R2 as a unit circle. (Right)We
plot the set of all points Au. By observing the way that A distorts the unit circle, we
can see that it scales space in direction v()i by λi.

41

CHAPTER 2. LINEAR ALGEBRA

matrices that have a simple decomposition. Specifically, every real symmetric
matrix can be decomposed into an expression using only real-valued eigenvectors
and eigenvalues:

A Q Q= Λ , (2.41)

where Q is an orthogonal matrix composed of eigenvectors of A, and Λ is a
diagonal matrix. The eigenvalue Λi,i is associated with the eigenvector in column i

of Q, denoted as Q :,i. Because Q is an orthogonal matrix, we can think of A as
scaling space by λi in direction v()i . See figure for an example.2.3

While any real symmetric matrix A is guaranteed to have an eigendecomposi-
tion, the eigendecomposition may not be unique. If any two or more eigenvectors
share the same eigenvalue, then any set of orthogonal vectors lying in their span
are also eigenvectors with that eigenvalue, and we could equivalently choose a Q
using those eigenvectors instead. By convention, we usually sort the entries of Λ
in descending order. Under this convention, the eigendecomposition is unique only
if all the eigenvalues are unique.

The eigendecomposition of a matrix tells us many useful facts about the
matrix. The matrix is singular if and only if any of the eigenvalues are zero.
The eigendecomposition of a real symmetric matrix can also be used to optimize
quadratic expressions of the form f (x) = xAx subject to || ||x 2 = 1. Whenever x
is equal to an eigenvector ofA, f takes on the value of the corresponding eigenvalue.
The maximum value of f within the constraint region is the maximum eigenvalue
and its minimum value within the constraint region is the minimum eigenvalue.

A matrix whose eigenvalues are all positive is called positive definite. A
matrix whose eigenvalues are all positive or zero valued is called positive semidefi-
nite. Likewise, if all eigenvalues are negative, the matrix is negative definite, and
if all eigenvalues are negative or zero valued, it is negative semidefinite. Positive
semidefinite matrices are interesting because they guarantee that ∀x x, Ax ≥ 0.
Positive definite matrices additionally guarantee that xAx x= 0 ⇒ = 0.

2.8 Singular Value Decomposition

In section , we saw how to decompose a matrix into eigenvectors and eigenvalues.2.7
The singular value decomposition (SVD) provides another way to factorize
a matrix, into singular vectors and singular values. The SVD enables us to
discover some of the same kind of information as the eigendecomposition reveals;
however, the SVD is more generally applicable. Every real matrix has a singular
value decomposition, but the same is not true of the eigenvalue decomposition.

42

CHAPTER 2. LINEAR ALGEBRA

For example, if a matrix is not square, the eigendecomposition is not defined, and
we must use a singular value decomposition instead.

Recall that the eigendecomposition involves analyzing a matrix A to discover
a matrix V of eigenvectors and a vector of eigenvalues λ such that we can rewrite
A as

A V λ V= diag() −1. (2.42)

The singular value decomposition is similar, except this time we will write A
as a product of three matrices:

A UDV=  . (2.43)

Suppose that A is an m n× matrix. Then U is defined to be an m m× matrix,
D Vto be an matrix, andm n× to be an matrix.n n×

Each of these matrices is defined to have a special structure. The matrices U
and V are both defined to be orthogonal matrices. The matrix D is defined to be
a diagonal matrix. Note that is not necessarily square.D

The elements along the diagonal of D are known as the singular values of
the matrix A. The columns of U are known as the left-singular vectors. The
columns of are known as as theV right-singular vectors.

We can actually interpret the singular value decomposition of A in terms of
the eigendecomposition of functions ofA . The left-singular vectors ofA are the
eigenvectors of AA. The right-singular vectors of A are the eigenvectors ofAA.
The nonzero singular values of A are the square roots of the eigenvalues of AA.
The same is true for AA.

Perhaps the most useful feature of the SVD is that we can use it to partially
generalize matrix inversion to nonsquare matrices, as we will see in the next section.

2.9 The Moore-Penrose Pseudoinverse

Matrix inversion is not defined for matrices that are not square. Suppose we want
to make a left-inverse of a matrix so that we can solve a linear equationB A

Ax y= (2.44)

by left-multiplying each side to obtain

x By= . (2.45)

43

CHAPTER 2. LINEAR ALGEBRA

Depending on the structure of the problem, it may not be possible to design a
unique mapping from to .A B

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

TheMoore-Penrose pseudoinverse enables us to make some headway in
these cases. The pseudoinverse of is defined as a matrixA

A+ = lim
α0

(AA I+ α)−1A. (2.46)

Practical algorithms for computing the pseudoinverse are based not on this defini-
tion, but rather on the formula

A+ = VD+U , (2.47)

where U , D andV are the singular value decomposition ofA, and the pseudoinverse
D+ of a diagonal matrix D is obtained by taking the reciprocal of its nonzero
elements then taking the transpose of the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution x = A+y with minimal Euclidean norm || ||x 2 among all possible
solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the x for which Ax is as close as
possible to in terms of Euclidean normy || − ||Ax y 2.

2.10 The Trace Operator

The trace operator gives the sum of all the diagonal entries of a matrix:

Tr() =A


i

Ai,i. (2.48)

The trace operator is useful for a variety of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using
matrix products and the trace operator. For example, the trace operator provides
an alternative way of writing the Frobenius norm of a matrix:

|| ||A F =


Tr(AA). (2.49)

44

CHAPTER 2. LINEAR ALGEBRA

Writing an expression in terms of the trace operator opens up opportunities to
manipulate the expression using many useful identities. For example, the trace
operator is invariant to the transpose operator:

Tr() = Tr(A A). (2.50)

The trace of a square matrix composed of many factors is also invariant to
moving the last factor into the first position, if the shapes of the corresponding
matrices allow the resulting product to be defined:

Tr() = Tr() = Tr()ABC CAB BCA (2.51)

or more generally,

Tr(

n

i=1

F ()i) = Tr(F ()n
n−1

i=1

F()i). (2.52)

This invariance to cyclic permutation holds even if the resulting product has a
different shape. For example, for A ∈ R

m n× and B ∈ R
n m× , we have

Tr() = Tr()AB BA (2.53)

even though AB ∈ R
m m× and BA ∈ R

n n× .

Another useful fact to keep in mind is that a scalar is its own trace: a = Tr(a).

2.11 The Determinant

The determinant of a square matrix, denoted det(A), is a function that maps
matrices to real scalars. The determinant is equal to the product of all the
eigenvalues of the matrix. The absolute value of the determinant can be thought
of as a measure of how much multiplication by the matrix expands or contracts
space. If the determinant is 0, then space is contracted completely along at least
one dimension, causing it to lose all its volume. If the determinant is 1, then the
transformation preserves volume.

2.12 Example: Principal Components Analysis

One simple machine learning algorithm, principal components analysis (PCA),
can be derived using only knowledge of basic linear algebra.

45

CHAPTER 2. LINEAR ALGEBRA

Suppose we have a collection of pointsm {x(1), . . . ,x()m } in R
n and we want

to apply lossy compression to these points. Lossy compression means storing the
points in a way that requires less memory but may lose some precision. We want
to lose as little precision as possible.

One way we can encode these points is to represent a lower-dimensional version
of them. For each point x()i ∈ R

n we will find a corresponding code vector c()i ∈ R
l.

If l is smaller than n, storing the code points will take less memory than storing the
original data. We will want to find some encoding function that produces the code
for an input, f (x) = c, and a decoding function that produces the reconstructed
input given its code, .x x≈ g f(())

PCA is defined by our choice of the decoding function. Specifically, to make the
decoder very simple, we choose to use matrix multiplication to map the code back
into R

n . Let , whereg() = c Dc D ∈ R
n l× is the matrix defining the decoding.

Computing the optimal code for this decoder could be a difficult problem. To
keep the encoding problem easy, PCA constrains the columns of D to be orthogonal
to each other. (Note that D is still not technically “an orthogonal matrix” unless
l n= .)

With the problem as described so far, many solutions are possible, because we
can increase the scale ofD:,i if we decrease ci proportionally for all points. To give
the problem a unique solution, we constrain all the columns of D to have unit
norm.

In order to turn this basic idea into an algorithm we can implement, the first
thing we need to do is figure out how to generate the optimal code point c∗ for
each input point x. One way to do this is to minimize the distance between the
input point x and its reconstruction, g(c∗). We can measure this distance using a
norm. In the principal components algorithm, we use the L2 norm:

c∗= arg min
c

|| − ||x g()c 2. (2.54)

We can switch to the squared L2 norm instead of using the L2 norm itself
because both are minimized by the same value of c. Both are minimized by the
same value of c because the L2 norm is non-negative and the squaring operation is
monotonically increasing for non-negative arguments.

c∗= arg min
c

|| − ||x g()c 2
2. (2.55)

The function being minimized simplifies to

(())x− g c (())x− g c (2.56)

46

CHAPTER 2. LINEAR ALGEBRA

(by the definition of the L2 norm, equation)2.30

= xx x− g g()c − ()c x c+ (g)g()c (2.57)

(by the distributive property)

= xx x− 2 g g() +c ()c g()c (2.58)

(because the scalar g()c x is equal to the transpose of itself).

We can now change the function being minimized again, to omit the first term,
since this term does not depend on :c

c∗ = arg min
c

−2xg g() +c ()c g .()c (2.59)

To make further progress, we must substitute in the definition of :g()c

c∗ = arg min
c

−2xDc c+ DDc (2.60)

= arg min
c

−2xDc c+ Ilc (2.61)

(by the orthogonality and unit norm constraints on)D

= arg min
c

−2xDc c+  c. (2.62)

We can solve this optimization problem using vector calculus (see section if4.3
you do not know how to do this):

∇c(2− xDc c+ c) = 0 (2.63)

− 2Dx c+ 2 = 0 (2.64)

c D= x. (2.65)

This makes the algorithm efficient: we can optimally encode x using just a
matrix-vector operation. To encode a vector, we apply the encoder function

f() = x Dx. (2.66)

Using a further matrix multiplication, we can also define the PCA reconstruction
operation:

r g f() = x (()) = x DDx. (2.67)

47

CHAPTER 2. LINEAR ALGEBRA

Next, we need to choose the encoding matrix D . To do so, we revisit the idea
of minimizing the L2 distance between inputs and reconstructions. Since we will
use the same matrix D to decode all the points, we can no longer consider the
points in isolation. Instead, we must minimize the Frobenius norm of the matrix
of errors computed over all dimensions and all points:

D∗ = arg min
D



i,j


x
()i
j − r(x()i)j

2
subject to DD I= l. (2.68)

To derive the algorithm for finding D∗, we start by considering the case where
l = 1. In this case, D is just a single vector, d. Substituting equation into2.67
equation and simplifying into , the problem reduces to2.68 D d

d∗ = arg min
d



i

||x()i − ddx()i ||22 subject to || ||d 2 = 1. (2.69)

The above formulation is the most direct way of performing the substitution but
is not the most stylistically pleasing way to write the equation. It places the scalar
value dx()i on the right of the vector d. Scalar coefficients are conventionally
written on the left of vector they operate on. We therefore usually write such a
formula as

d∗ = arg min
d



i

||x()i − dx ()i d||22 subject to || ||d 2 = 1, (2.70)

or, exploiting the fact that a scalar is its own transpose, as

d∗ = arg min
d



i

||x()i − x()i dd||22 subject to || ||d 2 = 1. (2.71)

The reader should aim to become familiar with such cosmetic rearrangements.

At this point, it can be helpful to rewrite the problem in terms of a single
design matrix of examples, rather than as a sum over separate example vectors.
This will enable us to use more compact notation. Let X ∈ R

m n× be the matrix
defined by stacking all the vectors describing the points, such that Xi,: = x()i  .
We can now rewrite the problem as

d∗= arg min
d

|| −X Xdd||2F subject to dd = 1. (2.72)

Disregarding the constraint for the moment, we can simplify the Frobenius norm
portion as follows:

arg min
d

|| −X Xdd ||2F (2.73)

48

CHAPTER 2. LINEAR ALGEBRA

= arg min
d

Tr


X Xdd− 

 
X Xdd− 


(2.74)

(by equation)2.49

= arg min
d

Tr(XX X− Xdd− ddXX dd+ XXdd) (2.75)

= arg min
d

Tr(XX) Tr(− XXdd) Tr(− ddXX) + Tr(ddXXdd)

(2.76)
= arg min

d

− Tr(XXdd) Tr(− ddXX) + Tr(ddXXdd) (2.77)

(because terms not involving do not affect the)d arg min

= arg min
d

−2 Tr(XXdd) + Tr(ddXXdd) (2.78)

(because we can cycle the order of the matrices inside a trace, equation)2.52

= arg min
d

−2 Tr(XXdd) + Tr(XXdddd) (2.79)

(using the same property again).

At this point, we reintroduce the constraint:

arg min
d

−2 Tr(XXdd) + Tr(XXdddd) subject to dd = 1 (2.80)

= arg min
d

−2 Tr(XXdd) + Tr(XXdd) subject to dd = 1 (2.81)

(due to the constraint)

= arg min
d

− Tr(XXdd) subject to dd = 1 (2.82)

= arg max
d

Tr(XXdd) subject to dd = 1 (2.83)

= arg max
d

Tr(dXXd d) subject to d = 1. (2.84)

This optimization problem may be solved using eigendecomposition. Specifically,
the optimal d is given by the eigenvector of XX corresponding to the largest
eigenvalue.

This derivation is specific to the case of l = 1 and recovers only the first
principal component. More generally, when we wish to recover a basis of principal

49

CHAPTER 2. LINEAR ALGEBRA

components, the matrix D is given by the l eigenvectors corresponding to the
largest eigenvalues. This may be shown using proof by induction. We recommend
writing this proof as an exercise.

Linear algebra is one of the fundamental mathematical disciplines necessary to
understanding deep learning. Another key area of mathematics that is ubiquitous
in machine learning is probability theory, presented next.

50

