CS490/590 Lecture 17: Variational Autoencoders

Eren Gultepe
Department of Computer Science SIUE
Spring 2020

Adapted from Roger Grosse

1/28

Overview

@ Recall the generator network:

&~ -

Each dimension of the code
vector is sampled independently
from a simple distribution,
e.g. Gaussian or uniform.

sample

This is fed to a
(deterministic) The network
generator network. outputs an image.

code vector
@ One of the goals of unsupervised learning is to learn representations
of images, sentences, etc.

@ With reversible models, z and x must be the same size. Therefore, we
can't reduce the dimensionality.

e Today, we'll cover the variational autoencoder (VAE), a generative
model that explicitly learns a low-dimensional representation.

. 22

Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

100 units

code vector
100 units encoder

. 525

reconstruction

decoder

Autoencoders

Why autoencoders?
@ Map high-dimensional data to two dimensions for visualization

o Compression (i.e. reducing the file size)
o Note: this requires a VAE, not just an ordinary autoencoder.

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task
e Unlabled data can be much more plentiful than labeled data
@ Learn a semantically meaningful representation where you can, e.g.,
interpolate between different images.

] 4/28

Principal Component Analysis

@ The simplest kind of autoencoder has one

hidden layer, linear activations, and squared % ‘ D units ‘
error loss.)
U decoder
3 — <112
‘C(va) - ||X—X|| K units
A
@ This network computes X = UVx, which is a V encoder

linear function.

o If K> D, we can choose U and V such that
UV is the identity. This isn't very interesting.

X | D units ‘

o But suppose K < D:
e V maps x to a K-dimensional space, so it's doing dimensionality
reduction.
e The output must lie in a K-dimensional subspace, namely the column
space of U.

. 5725

Principal Component Analysis

o Linear autoencoders with

squared error loss are equivalent rna'-nﬁg
to Principal Component Analysis aﬁﬁ!ﬁz'g
(PCA). Two equivalent . —t 3-"‘ z
e formulations: Hﬂﬁﬂﬁﬁ!ﬂ
e Find the subspace that E%EEEB
minimizes the reconstruction =
BEEERREN
o Find the subspace that Eﬁﬁ-aiﬁ
maximizes the projected e - -
SEEEEEEE
@ The optimal subspace is ﬁ

spanned by the dominant

eigenvectors of the empirical
covariance matrix.

“Eigenfaces”

. 6725

Deep Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

@ This manifold is the image of the decoder.

@ This is a kind of nonlinear dimensionality reduction.

100 units

100 units

. 728

Deep Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

D /&3 4s &b QR
B / a % LI S_ C’-?' d q Sg-el:;))auto

EEEEEREREEK]

8/28

Deep Autoencoders

@ Some limitations of autoencoders

e They're not generative models, so they don't define a distribution
e How to choose the latent dimension?

. oz

N
Observation Model

o Consider training a generator network with maximum likelihood.

p(x) = / p(2)p(x | 2) dz

@ One problem: if z is low-dimensional and the decoder is deterministic,
then p(x) = 0 almost everywhere!

e The model only generates samples over a low-dimensional sub-manifold
of X.

@ Solution: define a noisy observation
model, e.g.

p(x|z) = N(x; Gg(z),nl),

where Gg is the function computed by
the decoder with parameters 6.

. 10728

N
Observation Model

o At least p(x) = [p(z)p(x|z)dz is well-defined, but how can we

compute it?
@ Integration, according to XKCD:
DIFFERENTIATION INTEGRATION

TRY APPLYING
CHAIN POLER
RULE RULE

QUOTIENT PRODUCT
RULE RULE
ETC

] 11/28

N
Observation Model

o At least p(x) = [p(z)p(x|z) dz is well-defined, but how can we
compute it?

o The decoder function Gg(z) is very complicated, so there's no hope of
finding a closed form.

e Instead, we will try to maximize a lower bound on log p(x).
e The math is essentially the same as in the EM algorithm from CSC411.

. 1272

Variational Inference

@ We obtain the lower bound using
Jensen’s Inequality: for a convex
function h of a random variable X,

E[A(X)] = h(E[X])

Therefore, if his concave (i.e. —h is
convex),

E[A(X)] < h(E[X])

. . log 2z
@ The function log z is concave.

Therefore,

Eflog X] < log E[X]

. 13/28

Variational Inference

@ Suppose we have some distribution g(z). (We'll see later where this
comes from.)

@ We use Jensen's Inequality to obtain the lower bound.
0g p(x) = log [p(z) p(x]z) dz
_ P(2)
= log / a(a) B2 p(xlz) dz
q(z) log [P(z) p(x|z)] (Jensen’s Inequality)
q(z)
[log E;] + By [log p(x|2)]

o We'll look at these two terms in turn.

] 14/28

Variational Inference

@ The first term we'll look at is E [log p(x|z)]

@ Since we assumed a Gaussian observation model,

log p(x|z) = log N'(x; Go(2), 1)

— 1oz | 5 o e (<5 Ix - Gola)1?)
1

—%Hx — Gg(2)||? + const

@ So this term is the expected squared error in reconstructing x from z.
We call it the reconstruction term.

. 15728

Variational Inference

@ The second term is [Eq [Iog 58}

e This is just —Dkr.(g(z)]|p(z)), where Dy, is the Kullback-Leibler
(KL) divergence

Dk (a(z)1p(z)) £ Eq [log ZE;]

e KL divergence is a widely used measure of distance between probability
distributions, though it doesn’t satisfy the axioms to be a distance
metric.

e More details in tutorial.

e Typically, p(z) = N(0,1). Hence, the KL term encourages g to be
close to M(0,1).

o We'll give the KL term a much more interesting interpretation when
we discuss Bayesian neural nets.

. 16728

Variational Inference

@ Hence, we're trying to maximize the variational lower bound, or
variational free energy:

log p(x) > F(6, q) = Eq [log p(x|z)] — Dkwr(ql|p)-

@ The term “variational” is a historical accident: ‘“variational inference”
used to be done using variational calculus, but this isn't how we train
VAEs.

@ We'd like to choose g to make the bound as tight as possible.
@ It's possible to show that the gap is given by:

log p(x) — F(0, q) = Dkr(q(2)l|p(z]x))-

Therefore, we'd like g to be as close as possible to the posterior
distribution p(z|x).

. 1772

@ Let's think about the role of each of the two terms.

@ The reconstruction term

1
Eqllog p(x[2)] = — 5 5Eq[llx — Go(2)|*] + const
is minimized when ¢ is a point mass on

z, = argmin ||x — Gy(2)|°.
z

@ But a point mass would have infinite KL divergence. (Exercise: check
this.) So the KL term forces g to be more spread out.

. ——

Reparameterization Trick

@ To fit g, let's assign it a parametric form, in particular a Gaussian
distribution: g(z) = N(z; u, X), where p = (u1, ..., puk) and
T =diag(o3,...,0%).

@ In general, it’s hard to differentiate through an expectation. But for
Gaussian g, we can apply the reparameterization trick:

zj = pj + oj€j,

where €¢; ~ N(0,1).
@ Hence,
m=7% =%

@ This is exactly analogous to how we derived the backprop rules for
droopout.

] 19/28

Amortization

@ This suggests one strategy for learning the decoder. For each training
example,
@ Fit g to approximate the posterior for the current x by doing many
steps of gradient ascent on F.
@ Update the decoder parameters 8 with gradient ascent on F.
@ Problem: this requires an expensive iterative procedure for every
training example, so it will take a long time to process the whole
training set.

. n—_—

N
Amortization

o Idea: amortize the cost of inference by
learning an inference network which

predicts (i, X) as a function of x. /E

@ The outputs of the inference net are p
and logo. (The log representation ogal q(z/x)
ensures o > 0.) . E

o If o = 0, then this network essentially
computes z deterministically, by way of

L. I:I:I
o But the KL term encourages o > 0,

so in general z will be noisy.

@ The notation g(z|x) emphasizes that ¢
depends on x, even though it's not
actually a conditional distribution.

. 21728

Amortization

@ Combining this with the decoder
network, we see the structure closely
resembles an ordinary autoencoder. The
inference net is like an encoder.

@ Hence, this architecture is known as a
variational autoencoder (VAE).

@ The parameters of both the encoder
and decoder networks are updated using
a single pass of ordinary backprop.

o The reconstruction term corresponds
to squared error ||x — /|2, like in an
ordinary VAE.

o The KL term regularizes the
representation by encouraging z to be
more stochastic.

_—Ll decoder

- encoder

22/28

N
VAEs vs. Other Generative Models

@ In short, a VAE is like an autoencoder, except that it's also a
generative model (defines a distribution p(x)).

@ Unlike autoregressive models, generation only requires one forward
pass.

@ Unlike reversible models, we can fit a low-dimensional latent
representation. We'll see we can do interesting things with this...

23/28

N
Class-Conditional VAE

@ So far, we haven't used the labels y. A X
class-conditional VAE provides the
labels to both the encoder and the

decoder. ‘i
@ Since the latent code z no longer has to é

model the image category, it can focus
on modeling the stylistic features.

/
log o
o If we're lucky, this lets us disentangle a

style and content. (Note:
disentanglement is still a dark art.)

@ See Kingma et al., “Semi-supervised
X

learning with deep generative models.”

] 2428

Class-Conditional VAE

@ By varying two latent dimensions (i.e. dimensions of z) while holding

y fixed, we can visualize the latent space.

TEFTEFTTITTITTFIT
TPFPTTFTTFTTITTITTT T
FPFTFFFTTFTTFTTTT
FFIFFFITFITITFITT
TTITITFITFITFITFTITFITT
FITrITFITITTTT
Ul....1U1U1¢'dlul.ul
4

T TTTTT T

ooy Yy
o Yy

R e e R R T T
T B L B T T T T
™) ™) T O 0 O ey e e
R L T T A
MmmMmmmMmmmmmmm
™) M)) N) M) 6 e
™ M) M) M) M Moo
MOMOMMEOEEO O
MNOOOM@OEOWEO~
OO @O @O OO0

NN
NN NN
AN
O NN
T T W W W
ALY
mOoaOoganaonmeed
maaaannctce
Mo cadcadcdd
2 32 32 T T 3 3 0 S B

25 /28

Conditional VAE

Class-

@ By varying the label y while holding z fixed, we can solve image

analogies.

..,-A
2|

| U DU B
g Ny oy

121314151617181910
BB BOLBED
iy B A,

0l

liu
E I:ll"
12

NSO WNNT O
Be %0 B 00 Do Oy N 00 00 o
N SAESANC S
NYO OOV 990
whlLonbyLueow
FPEETIINRNTITIT
MO MOMM ™0 0o
NANONG XN
NN —NN— -~

V0L O0QNO00O
*rL NN Y— P~

26 /28

Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

LR EEE Y {5
£ DY P R e

%\ %ﬂ%ﬂﬁ/‘%%% N\ ‘%@L’%DFQ\

Ha and Eck, “A neural repr of sketch drawings”

27 /28

Latent Space Interpolations

@ Latent space interpolation of music:
https://magenta.tensorflow.org/music-vae

] 28/28

https://magenta.tensorflow.org/music-vae

