CS490/590 Lecture 14: Learning Long-Term
 Dependencies

Eren Gultepe
Department of Computer Science SIUE - Spring 2020

Adapted from Roger Grosse and Jimmy Ba

Overview

- Yesterday, we saw how to compute the gradient descent update for an RNN using backprop through time.
- The updates are mathematically correct, but unless we're very careful, gradient descent completely fails because the gradients explode or vanish.
- The problem is, it's hard to learn dependencies over long time windows.
- Today's lecture is about what causes exploding and vanishing gradients, and how to deal with them. Or, equivalently, how to learn long-term dependencies.

Why Gradients Explode or Vanish

- Recall the RNN for machine translation. It reads an entire English sentence, and then has to output its French translation.

- A typical sentence length is 20 words. This means there's a gap of 20 time steps between when it sees information and when it needs it.
- The derivatives need to travel over this entire pathway.

Why Gradients Explode or Vanish

Recall: backprop through time

Activations:

$$
\begin{aligned}
\overline{\mathcal{L}} & =1 \\
\overline{y^{(t)}} & =\overline{\mathcal{L}} \frac{\partial \mathcal{L}}{\partial y^{(t)}} \\
\overline{r^{(t)}} & =\overline{y^{(t)}} \phi^{\prime}\left(r^{(t)}\right) \\
\overline{h^{(t)}} & =\overline{r^{(t)}} v+\overline{z^{(t+1)}} w \\
\overline{z^{(t)}} & =\overline{h^{(t)}} \phi^{\prime}\left(z^{(t)}\right)
\end{aligned}
$$

Parameters:

$$
\begin{aligned}
& \bar{u}=\sum_{t} \overline{z^{(t)}} x^{(t)} \\
& \bar{v}=\sum_{t} \overline{r^{(t)}} h^{(t)} \\
& \bar{w}=\sum_{t} \overline{z^{(t+1)}} h^{(t)}
\end{aligned}
$$

Why Gradients Explode or Vanish

Consider a univariate version of the encoder network:

Backprop updates:

$$
\begin{aligned}
& \overline{h^{(t)}}=\overline{z^{(t+1)}} w \\
& \overline{z^{(t)}}=\overline{h^{(t)}} \phi^{\prime}\left(z^{(t)}\right)
\end{aligned}
$$

Applying this recursively:

$$
\overline{h^{(1)}}=\underbrace{w^{T-1} \phi^{\prime}\left(z^{(2)}\right) \cdots \phi^{\prime}\left(z^{(T)}\right)}_{\text {the Jacobian } \partial h^{(T)} / \partial h^{(1)}} \overline{h^{(T)}}
$$

With linear activations:

$$
\partial h^{(T)} / \partial h^{(1)}=w^{T-1}
$$

Exploding:

$$
w=1.1, T=50 \quad \Rightarrow \quad \frac{\partial h^{(T)}}{\partial h^{(1)}}=117.4
$$

Vanishing:

$$
w=0.9, T=50 \quad \Rightarrow \quad \frac{\partial h^{(T)}}{\partial h^{(1)}}=0.00515
$$

Why Gradients Explode or Vanish

- More generally, in the multivariate case, the Jacobians multiply:

$$
\frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(1)}}=\frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(T-1)}} \cdots \frac{\partial \mathbf{h}^{(2)}}{\partial \mathbf{h}^{(1)}}
$$

- Matrices can explode or vanish just like scalar values, though it's slightly harder to make precise.
- Contrast this with the forward pass:
- The forward pass has nonlinear activation functions which squash the activations, preventing them from blowing up.
- The backward pass is linear, so it's hard to keep things stable. There's a thin line between exploding and vanishing.

Why Gradients Explode or Vanish

- We just looked at exploding/vanishing gradients in terms of the mechanics of backprop. Now let's think about it conceptually.
- The Jacobian $\partial \mathbf{h}^{(T)} / \partial \mathbf{h}^{(1)}$ means, how much does $h^{(T)}$ change when you change $\mathbf{h}^{(1)}$?
- Each hidden layer computes some function of the previous hiddens and the current input:

$$
\mathbf{h}^{(t)}=f\left(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}\right)
$$

- This function gets iterated:

$$
\mathbf{h}^{(4)}=f\left(f\left(f\left(\mathbf{h}^{(1)}, \mathbf{x}^{(2)}\right), \mathbf{x}^{(3)}\right), \mathbf{x}^{(4)}\right)
$$

- Let's study iterated functions as a way of understanding what RNNs are computing.

Iterated Functions

- Iterated functions are complicated. Consider:

$$
f(x)=3.5 x(1-x)
$$

Iterated Functions

An aside:

- Remember the Mandelbrot set? That's based on an iterated quadratic map over the complex plane:

$$
z_{n}=z_{n-1}^{2}+c
$$

- The set consists of the values of c for which the iterates stay bounded.

Iterated Functions

Consider the following iterated function:

$$
x_{t+1}=x_{t}^{2}+0.15
$$

We can determine the behavior of repeated iterations visually:

The behavior of the system can be summarized with a phase plot:

Iterated Functions

Some observations:

- Fixed points of f correspond to points where f crosses the line $x_{t+1}=x_{t}$.
- Fixed points with $f^{\prime}\left(x_{t}\right)>1$ correspond to sources.
- Fixed points with $f^{\prime}\left(x_{t}\right)<1$ correspond to sinks.

Why Gradients Explode or Vanish

- Let's imagine an RNN's behavior as a dynamical system, which has various attractors:

- Geoffrey Hinton, Coursera
- Within one of the colored regions, the gradients vanish because even if you move a little, you still wind up at the same attractor.
- If you're on the boundary, the gradient blows up because moving slightly moves you from one attractor to the other.

Why Gradients Explode or Vanish

- Consider an RNN with tanh activation function:

- The function computed by the network:

Why Gradients Explode or Vanish

- Cliffs make it hard to estimate the true cost gradient. Here are the loss and cost functions with respect to the bias parameter for the hidden units:

Individual training examples

Cost over 1000 examples

- Generally, the gradients will explode on some inputs and vanish on others. In expectation, the cost may be fairly smooth.

Keeping Things Stable

- One simple solution: gradient clipping
- Clip the gradient \mathbf{g} so that it has a norm of at most η :

$$
\text { if }\|\mathbf{g}\|>\eta:
$$

$$
\mathbf{g} \leftarrow \frac{\eta \mathbf{g}}{\|\mathbf{g}\|}
$$

- The gradients are biased, but at least they don't blow up.

With clipping

Keeping Things Stable

- Another trick: reverse the input sequence.

- This way, there's only one time step between the first word of the input and the first word of the output.
- The network can first learn short-term dependencies between early words in the sentence, and then long-term dependencies between later words.

Keeping Things Stable

- Really, we're better off redesigning the architecture, since the exploding/vanishing problem highlights a conceptual problem with vanilla RNNs.
- The hidden units are a kind of memory. Therefore, their default behavior should be to keep their previous value.
- I.e., the function at each time step should be close to the identity function.
- It's hard to implement the identity function if the activation function is nonlinear!
- If the function is close to the identity, the gradient computations are stable.
- The Jacobians $\partial \mathbf{h}^{(t+1)} / \partial \mathbf{h}^{(t)}$ are close to the identity matrix, so we can multiply them together and things don't blow up.

Keeping Things Stable

- Identity RNNs
- Use the ReLU activation function
- Initialize all the weight matrices to the identity matrix
- Negative activations are clipped to zero, but for positive activations, units simply retain their value in the absence of inputs.
- This allows learning much longer-term dependencies than vanilla RNNs.
- It was able to learn to classify MNIST digits, input as sequence one pixel at a time!

Le et al., 2015. A simple way to initialize recurrent networks of rectified linear units.

Long-Term Short Term Memory

- Another architecture which makes it easy to remember information over long time periods is called Long-Term Short Term Memory (LSTM)
- What's with the name? The idea is that a network's activations are its short-term memory and its weights are its long-term memory.
- The LSTM architecture wants the short-term memory to last for a long time period.
- It's composed of memory cells which have controllers saying when to store or forget information.

Long-Term Short Term Memory

Replace each single unit in an RNN by a memory block -

$c_{t+1}=c_{t} \cdot$ forget gate + new input \cdot input gate

- $i=0, f=1 \Rightarrow$ remember the previous value
- $i=1, f=1 \Rightarrow$ add to the previous value
- $i=0, f=0 \Rightarrow$ erase the value
- $i=1, f=0 \Rightarrow$ overwrite the value

Setting $i=0, f=1$ gives the reasonable "default" behavior of just remembering things.

Long-Term Short Term Memory

- In each step, we have a vector of memory cells \mathbf{c}, a vector of hidden units \mathbf{h}, and vectors of input, output, and forget gates \mathbf{i}, \mathbf{o}, and \mathbf{f}.
- There's a full set of connections from all the inputs and hiddens to the input and all of the gates:

$$
\begin{aligned}
\left(\begin{array}{c}
\mathbf{i}_{t} \\
\mathbf{f}_{t} \\
\mathbf{o}_{t} \\
\mathbf{g}_{t}
\end{array}\right) & =\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right) \mathbf{W}\binom{\mathbf{y}_{t}}{\mathbf{h}_{t-1}} \\
\mathbf{c}_{t} & =\mathbf{f}_{t} \circ \mathbf{c}_{t-1}+\mathbf{i}_{t} \circ \mathbf{g}_{t} \\
\mathbf{h}_{t} & =\mathbf{o}_{t} \circ \tanh \left(\mathbf{c}_{t}\right)
\end{aligned}
$$

- Exercise: show that if $\mathbf{f}_{t+1}=1, \mathbf{i}_{t+1}=0$, and $\mathbf{o}_{t}=0$, the gradients for the memory cell get passed through unmodified, i.e.

$$
\overline{\mathbf{c}_{t}}=\overline{\mathbf{c}_{t+1}}
$$

Long-Term Short Term Memory

- Sound complicated? ML researchers thought so, so LSTMs were hardly used for about a decade after they were proposed.
- In 2013 and 2014, researchers used them to get impressive results on challenging and important problems like speech recognition and machine translation.
- Since then, they've been one of the most widely used RNN architectures.
- There have been many attempts to simplify the architecture, but nothing was conclusively shown to be simpler and better.
- You never have to think about the complexity, since frameworks like TensorFlow provide nice black box implementations.

