CS490/590 Lecture 14: Learning Long-Term

Dependencies

Eren Gultepe
Department of Computer Science
SIUE - Spring 2020

Adapted from Roger Grosse
and Jimmy Ba

1/1

Overview

@ Yesterday, we saw how to compute the gradient descent update for an
RNN using backprop through time.

@ The updates are mathematically correct, but unless we're very careful,
gradient descent completely fails because the gradients explode or
vanish.

@ The problem is, it's hard to learn dependencies over long time
windows.

@ Today's lecture is about what causes exploding and vanishing
gradients, and how to deal with them. Or, equivalently, how to learn
long-term dependencies.

-
Why Gradients Explode or Vanish

@ Recall the RNN for machine translation. It reads an entire English
sentence, and then has to output its French translation.

i 1 1
[N N o B N S R o B e
£ T

A B z

> %

= —>

o0 —>

<EOS>

Encoder Decoder

@ A typical sentence length is 20 words. This means there's a gap of 20
time steps between when it sees information and when it needs it.

@ The derivatives need to travel over this entire pathway.

. 571

-
Why Gradients Explode or Vanish

Recall: backprop through time
Activations:

L£L=1
- - _ = 0L
/ \ yW=Low
y(1 Y) y(3) O = qzﬁ,(r(t))
I J J (1) = p(t) y 4 2(t+1)
1) 7' 2) r 3) 26 — p® ¢l(z(t))
1)-—>h 1)—> L2 2)_,2(3) h Parameters:

U= Z 2(6) x(0)
3) t L
V= Z () p)
t

4/1

Why Gradients Explode or Vanish

Consider a univariate version of the encoder network:

With linear activations:
Backprop updates:

on" jon™) = w1

m — Z(t+1)

- Exploding:
207 = 7 ¢/(29) ™
=11,T=5 = =117.4
Applying this recursively: v Oh()
J— — Vanishing:
A1) — WT—1¢/(Z(2)) . ..¢/(Z(T)) A(T) 8
(T
the Jacobian 8h(T) /oA w=09T=50 = DH = 0.00515

] 5/1

-
Why Gradients Explode or Vanish

@ More generally, in the multivariate case, the Jacobians multiply:

Oh(™M) Oh(T) Oh(@)

on@M ~ on(T-1) 5h®)

@ Matrices can explode or vanish just like scalar values, though it's
slightly harder to make precise.
@ Contrast this with the forward pass:

e The forward pass has nonlinear activation functions which squash the
activations, preventing them from blowing up.

o The backward pass is linear, so it's hard to keep things stable. There's
a thin line between exploding and vanishing.

-
Why Gradients Explode or Vanish

@ We just looked at exploding/vanishing gradients in terms of the
mechanics of backprop. Now let's think about it conceptually.

@ The Jacobian 8h(T)/8h(1) means, how much does A(T) change when
you change h(1)?

@ Each hidden layer computes some function of the previous hiddens
and the current input:

h(t) — f(h(tfl),x(t))
@ This function gets iterated:
h®) = £(£(F(h™M), x(2)), x(3)) x*),

o Let’s study iterated functions as a way of understanding what RNNs
are computing.

] 7/1

Iterated Functions

@ |terated functions are complicated. Consider:

f(x) =35x(1—x)

y=f(=) y=f(f(=))

Yy
Iz large

) y=fo-of(x)
foof

6 times

] 8/1

Iterated Functions

An aside:
@ Remember the Mandelbrot set? That's based on an iterated
quadratic map over the complex plane:

Zp :z,%,l +c

@ The set consists of the values of ¢ for which the iterates stay bounded.

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

] 9/1

N
Iterated Functions

Consider the following iterated function:
Xt4+1 = Xt2 + 0.15.

We can determine the behavior of repeated iterations visually:

1.2

1.0

0.8

0.6

0.4

0.2

0'8.0 0.2 0.4 0.6 0.8 1.0

The behavior of the system can be summarized with a phase plot:

0.17 0.82
(sink) (source)

. 071

Iterated Functions

0'8.0 0.2 0.4 0.6 0.8 1.0

Some observations:
@ Fixed points of f correspond to points where f crosses the line x;11 = x;.
@ Fixed points with f’(x;) > 1 correspond to sources.

@ Fixed points with /(x;) < 1 correspond to sinks.

. o

-
Why Gradients Explode or Vanish

@ Let’s imagine an RNN's behavior as a dynamical system, which has
various attractors:

— Geoffrey Hinton, Coursera

@ Within one of the colored regions, the gradients vanish because even
if you move a little, you still wind up at the same attractor.

@ If you're on the boundary, the gradient blows up because moving
slightly moves you from one attractor to the other.

. -

-
Why Gradients Explode or Vanish

@ Consider an RNN with tanh activation function:

@ The function computed by the network:

A,;'éxplode
y °°f vanish

10 oe

05 0.0 05 10 15 =ty 10 05 0.0
38 X
TS R

B2 -

-
Why Gradients Explode or Vanish

o Cliffs make it hard to estimate the true cost gradient. Here are the
loss and cost functions with respect to the bias parameter for the
hidden units:

Individual training examples Cost over 1000 examples

~10 05 00 05 1o -10 05 00 05 10

@ Generally, the gradients will explode on some inputs and vanish on
others. In expectation, the cost may be fairly smooth.

] 14/1

Keeping Things Stable

@ One simple solution: gradient clipping

o Clip the gradient g so that it has a norm of at most 7:
if [lgll > »:

g(_ng

llgll
@ The gradients are biased, but at least they don't blow up.

Without clipping ‘With clipping

J(wp)
J(w,b)

— Goodfellow et al., Deep Learning

15 /1

-
Keeping Things Stable

@ Another trick: reverse the input sequence.

w X Y z

<EOS>

C B A <EOS> w X Y Z

@ This way, there's only one time step between the first word of the
input and the first word of the output.

@ The network can first learn short-term dependencies between early
words in the sentence, and then long-term dependencies between later
words.

. 1671

-
Keeping Things Stable

o Really, we're better off redesigning the architecture, since the
exploding/vanishing problem highlights a conceptual problem with
vanilla RNNs.

@ The hidden units are a kind of memory. Therefore, their default
behavior should be to keep their previous value.

e l.e., the function at each time step should be close to the identity
function.

e It's hard to implement the identity function if the activation function is
nonlinear!

o If the function is close to the identity, the gradient computations are
stable.

o The Jacobians 9h(*+1) /oh(?) are close to the identity matrix, so we can
multiply them together and things don't blow up.

. -

-
Keeping Things Stable

@ Identity RNNs

o Use the RelLU activation function
o Initialize all the weight matrices to the identity matrix

o Negative activations are clipped to zero, but for positive activations,
units simply retain their value in the absence of inputs.

@ This allows learning much longer-term dependencies than vanilla
RNNs.

@ It was able to learn to classify MNIST digits, input as sequence one
pixel at a time!

Le et al., 2015. A simple way to initialize
recurrent networks of rectified linear units.

. -

-
Long-Term Short Term Memory

@ Another architecture which makes it easy to remember information
over long time periods is called Long-Term Short Term Memory
(LSTM)

o What's with the name? The idea is that a network's activations are its
short-term memory and its weights are its long-term memory.

e The LSTM architecture wants the short-term memory to last for a long
time period.

@ It's composed of memory cells which have controllers saying when to
store or forget information.

. 971

-
Long-Term Short Term Memory

Replace each single unit in an RNN by a memory block -

Block,output
Inputs, \

outputs]
from all

blocks /

Output Gate

Ct+1 = ¢t - forget gate 4+ new input - input gate

/ @ /=0,f =1 = remember the previous
Inputs,
o:}{’;ufs value
from all . .
\blocks @ /=1,f =1 = add to the previous value

@ i =0,f =0 = erase the value

Inputs, \

outputs
from all

blocks /

@ j=1,f =0 = overwrite the value

Input Gaty L .
neatate Setting i = 0,f = 1 gives the reasonable

“default” behavior of just remembering things.

Block

inputs, outputs from all blocks

. 2071

Long-Term Short Term Memory

@ In each step, we have a vector of memory cells ¢, a vector of hidden
units h, and vectors of input, output, and forget gates i, o, and f.

@ There’s a full set of connections from all the inputs and hiddens to
the input and all of the gates:

i o

ff — o W(yt)
o; o h_;
g tanh

¢, =fioci1+itog;
h; = o; o tanh(c;)

@ Exercise: show that if f;11 =1, i;11 =0, and o; = 0, the gradients
for the memory cell get passed through unmodified, i.e.

Ct =Cty1-

. 71

-
Long-Term Short Term Memory

@ Sound complicated? ML researchers thought so, so LSTMs were
hardly used for about a decade after they were proposed.

@ In 2013 and 2014, researchers used them to get impressive results on
challenging and important problems like speech recognition and
machine translation.

@ Since then, they've been one of the most widely used RNN
architectures.

@ There have been many attempts to simplify the architecture, but
nothing was conclusively shown to be simpler and better.

@ You never have to think about the complexity, since frameworks like
TensorFlow provide nice black box implementations.

. 271

