CS 490/590 Lecture 13:

Recurrent Neural Networks

Eren Gultepe
Department of Computer Science
SIUE - Spring 2020

Adapted from Roger Grosse
and Jimmy Ba

1/26

Overview

@ Sometimes we're interested in predicting sequences
e Speech-to-text and text-to-speech
o Caption generation
e Machine translation
o If the input is also a sequence, this setting is known as
sequence-to-sequence prediction.
@ We already saw one way of doing this: neural language models

o But autoregressive models are memoryless, so they can't learn
long-distance dependencies.

o Recurrent neural networks (RNNs) are a kind of architecture which can
remember things over time.

. 22

Overview

Recall that we made a Markov assumption:
p(wi|wi,...,wi—1) = p(w;| w3, w2, w;_1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words. But sometimes long-distance context can be
important.

] 3/26

Overview

@ Autoregressive models such as the neural language model are
memoryless, so they can only use information from their immediate
context (in this figure, context length = 1):

‘ hiddens 1 ‘ ‘ hiddens 2 ‘ ‘ hiddens 3 ‘ ‘ hiddens 4 ‘

N

‘ word 1 ‘ ‘ word 2 ‘ ‘ word 3 ‘ ‘ word 4 ‘

o If we add connections between the hidden units, it becomes a
recurrent neural network (RNN). Having a memory lets an RNN use
longer-term dependencies:

‘ hiddens 1 } ‘ hiddens 2 } ‘ hiddens 3 ’—b{ hiddens 4 ‘
N LN \

‘ word 1 ‘ word 2 ‘ word 3 ‘ ‘ word 4 ‘

] 4/26

Recurrent neural nets

@ We can think of an RNN as a dynamical system with one set of
hidden units which feed into themselves. The network’s graph would

then have self-loops.

@ We can unroll the RNN's graph by explicitly representing the units at
all time steps. The weights and biases are shared between all time

steps

o Except there is typically a separate set of biases for the first time step.

output units

hidden units

input units

‘I S

time 1
output units

time 2
output units

time 3
output units

A

A

A

time 1 time 2 time 3
hidden units hidden units hidden units
time 1 time 2 time 3
input units input units input units

5/26

|
RNN examples

Now let's look at some simple examples of RNNs.

This one sums its inputs:

linear
output

linear
hidden
unit

T=1 T=; T=3 T=

6/26

|
RNN examples

This one determines if the total values of the first or second input are larger:

linear
hidden

7/26

-
Example: Parity

Assume we have a sequence of binary inputs. We'll consider how to
determine the parity, i.e. whether the number of 1's is even or odd.

We can compute parity incrementally by keeping track of the parity of the
input so far:

Parity bits:

0 —
Input: 0

11011
101101011
Each parity bit is the XOR of the input and the previous parity bit.

Parity is a classic example of a problem that's hard to solve with a shallow
feed-forward net, but easy to solve with an RNN.

. a2

-
Example: Parity

Assume we have a sequence of binary inputs. We'll consider how to
determine the parity, i.e. whether the number of 1's is even or odd.

@ Let's find weights and biases for the
RNN on the right so that it computes
the parity. All hidden and output units
are binary threshold units.

0/%

hidden hidden
unit 1 unit 2

o Strategy:

e The output unit tracks the current
parity, which is the XOR of the
current input and previous output.

e The hidden units help us compute the
XOR.

. oz

Example: Parity

Unrolling the parity RNN:

10/26

-
Example: Parity

The output unit should compute the XOR of the current input and
previous output:

. 1072

-
Example: Parity

Let’s use hidden units to help us compute XOR.
@ Have one unit compute AND, and the other one compute OR.

@ Then we can pick weights and biases just like we did for multilayer
perceptrons.

1 2
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

] 12/26

-
Example: Parity

Let’s use hidden units to help us compute XOR.
@ Have one unit compute AND, and the other one compute OR.

@ Then we can pick weights and biases just like we did for multilayer
perceptrons.

1 2
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

] 12/26

-
Example: Parity

We still need to determine the hidden biases for the first time step.

@ The network should behave as if the previous output was 0. This is
represented with the following table:

x| 1)
00 0
1

0 1

. 1372

Backprop Through Time

@ As you can guess, we don't usually set RNN weights by hand.
Instead, we learn them using backprop.

@ In particular, we do backprop on the unrolled network. This is known
as backprop through time.

14 /26

-
Backprop Through Time

Here's the unrolled computation graph. Notice the weight sharing.

L

AN

(1 U) y(g)

(1)—->h 1)—> (2)_-»h 2)—>Z(3)—> 3)

15 /26

-
Backprop Through Time

Activations:
L=1
L — . oC
Yy

U ,
J J J‘ O —
¢S] 2 r3) _

Z(1)__>hI1)—>Z(2)——>hL)—>Z(3)—>hL)

Parameters
I i=2
1) 2) 3)
x x x Z @ 0
w Zz(t+1) KO

. 16725

-
Backprop Through Time

@ Now you know how to compute the derivatives using backprop
through time.

@ The hard part is using the derivatives in optimization. They can
explode or vanish. Addressing this issue will take all of the next

lecture.

. 772

Language Modeling

One way to use RNNs as a language model:

target = target = target =
llquickll Ilbrownll llfoxll
time 1 [timez [times
hidden units "1 hidden units 7| hidden units
input = input = input =
"quick" "brown"

As with our language model, each word is represented as an indicator vector, the
model predicts a distribution, and we can train it with cross-entropy loss.

This model can learn long-distance dependencies.

18/26

Language Modeling

When we generate from the model (i.e. compute samples from its

distribution over sentences), the outputs feed back in to the network as
inputs.

time 1 o time 2 nd time 3 ol time 4
hidden units 7| hidden units "| hidden units 7| hidden units
"quick" "brown" llfox"

At training time, the inputs are the tokens from the training set (rather
than the network’s outputs). This is called teacher forcing.

19/26

Some remaining challenges:

@ Vocabularies can be very large once you include people, places, etc.

It's computationally difficult to predict distributions over millions of
words.

@ How do we deal with words we haven't seen before?

@ In some languages (e.g. German), it's hard to define what should be
considered a word.

20/26

-
Language Modeling

Another approach is to model text one character at a time!

target = target = target =
prive ng "o

time 1 time 2 time 3
hidden units hidden units hidden units

input = input = input =
" ngn

This solves the problem of what to do about previously unseen words.
Note that long-term memory is essential at the character level!

Note: modeling language well at the character level requires multiplicative interactions,
which we're not going to talk about.

. 2126

-
Language Modeling

From Geoff Hinton's Coursera course, an example of a paragraph
generated by an RNN language model one character at a time:

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters' sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

J. Martens and |. Sutskever, 2011. Learning recurrent neural networks with Hessian-free optimization.

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

. .

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Neural Machine Translation

We'd like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What's wrong with the following setup?

French French French
word 1 word 2 word 3
hidden hidden hidden
units 1 units 2 units 3
English English English
word 1 word 2 word 3

] 23/26

Neural Machine Translation

We'd like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What's wrong with the following setup?

French French French
word 1 word 2 word 3
hidden hidden hidden
units 1 units 2 units 3
English English English
word 1 word 2 word 3

@ The sentences might not be the same length, and the words might
not align perfectly.

@ You might need to resolve ambiguities using information from later in
the sentence.

. —

Neural Machine Translation

Sequence-to-sequence architecture: the network first reads and memorizes

the sentence. When it sees the end token, it starts outputting the
translation.

“le” “renTard” “brfm“ “rapTide” <E(T)S>
THTHT}——ITI—'!TH —]
“the” “quick” “brown” “fox” <EOS> “le” “renard” “brun” “rapide”

encoder decoder

The encoder and decoder are two different networks with different weights.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, K. Cho, B. van Merrienboer,
C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. EMNLP 2014.

Sequence to Sequence Learning with Neural Networks, llya Sutskever, Oriol Vinyals and Quoc Le, NIPS 2014.

. .

|
What can RNNs compute?

In 2014, Google researchers built an encoder-decoder RNN that learns to
execute simple Python programs, one character at a time!

Input:
j=8584
for x in range(8):
J+=920
b=(1500+7)
print ((b+7567))
Target: 25011. Input:
vagppkn
sgdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc
Target: hkhpg
Input:
i=8827
o= (i-5347) A training input with characters scrambled
print ((c+8704) if 2641<8500 else
5308)

Target: 1218.

Example training inputs

W. Zaremba and |. Sutskever, “Learning to Execute.” http://arxiv.org/abs/1410.4615

25 /26

http://arxiv.org/abs/1410.4615

|
What can RNNs compute?

Some example results:

Input:

print (6652) .
Target: 6652.
“’Baseline” prediction: 6652.
”Naive” prediction: 6652.
”Mix” prediction: 6652.

”Combined” prediction: 6652.

Input:

d=5446

for x in range(8):d+=(2678 if 4803<2829 else 9848)
print ((d if 5935<4845 else 3043)).

Target: 3043.
“’Baseline” prediction: 3043.
”’Naive” prediction: 3043.
”Mix” prediction: 3043.

”Combined” prediction: 3043.

print ((5997-738)) .

Target: 5259.
”’Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.

”Combined” prediction: 5229.

Input:

print (((1090-3305)+9466)) .
Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.

”Combined” prediction: 7699.

Take a look through the results (http://arxiv.org/pdf/1410.4615v2.pdf#page=10). It's fun

to try to guess from the mistakes what algorithms it’s discovered.

26 /26

http://arxiv.org/pdf/1410.4615v2.pdf#page=10

