CS5490/590 Lecture 5:
Multilayer Perceptrons

Eren Gultepe
Department of Computer Science
SIUE
Spring 2020

Adapted from Roger Grosse and Jimmy Ba

. o

Overview

@ Recall the simple neuron-like unit:

Yy output weights bias

output (l l
W gl §:¢(WTX+b>

)

activation function inputs

I To xIs

@ Linear regression and logistic regression can each be viewed as a
single unit.

@ These units are much more powerful if we connect many of them into
a neural network.

] 2/25

Limits of Linear Classification

@ Single neurons (linear classifiers) are very limited in expressive power.

@ XOR is a classic example of a function that's not linearly separable.

€2

X1

@ There's an elegant proof using convexity.

. .

Limits of Linear Classification

Convex Sets

N

@ A set S is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1,€S = M +(1-MN)xxe€8S for0< A< L

@ A simple inductive argument shows that for x1,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Axi+ -+ Ayxy €S for \j >0, M +---Ay=1.

] 4/25

Limits of Linear Classification

Showing that XOR is not linearly separable

@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

T2

@ But the intersection can't lie in both half-spaces. Contradiction!

5/25

Limits of Linear Classification

A more troubling example

CCm T mm w0 pattern A CommoTmsTTTTO pattern B
T mm w10 pattern A O rmm w711 pattern B

e e Pattern A o pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

. .

Limits of Linear Classification
A more troubling example

CCm T mm w0 pattern A CommoTmsTTTTO pattern B
T mm w10 pattern A O rmm w711 pattern B

e e Pattern A o pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).
Therefore, it must be classified as B. Contradiction!

Credit=Geoffrey Hinton

. i

Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

X1

P(x) = | x

X1X0
X x| ¢1(x) ¢a(x) ¢3(x) | ¢
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)
@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.

. 7

Multilayer Perceptrons

@ We can connect lots of
units together into a
directed acyclic graph.

@ This gives a feed-forward
neural network. That's
in contrast to recurrent
neural networks, which
can have cycles. (We'll
talk about those later.)

o Typically, units are
grouped together into
layers.

depth

a hidden
unit

| aconnection

an output
unit
1

an input
unit

output layer

second hidden layer

first hidden layer

input layer

8/25

Multilayer Perceptrons

@ Each layer connects N input units to M output units.

@ In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We'll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

@ Recall from softmax regression: this means we |
need an M x N weight matrix. \

@ The output units are a function of the input
units:

y = f(x) = ¢ (Wx + b)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!

. oz

Multilayer Perceptrons

Some activation functions:

Rectified Linear Unit

(ReLU) Soft RelLU

Linear

y= y = max(0, z) y =logl+e

. o

Multilayer Perceptrons

Some activation functions:

[
Hard Threshold Logistic
1 ifz>0 B 1
Y=Y o0 ifz<o Y =11 ez

Hyperbolic Tangent
(tanh)

e? —e %

y:ez+e—z

11/25

Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

1

1 ‘@ 1

. T2

Multilayer Perceptrons

. 13)25

Multilayer Perceptrons

@ Each layer computes a function, so the network
computes a composition of functions:

y [©O O
h(Y) = r((x) &)

h® — £2)(n(V)

f(3)m
: O O O
y = f(L)(h(L—l))

f(2)
@ Or more simply: h) l:O Q:|Q
(1)
y= o ofM(x). f

@ Neural nets provide modularity: we can implement
each layer's computations as a black box.

] 14/25

Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

. TS

Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

@ The goal:

. TS

Feature Learning

Input representation of a digit : 784 dimensional vector.

. 16725

Feature Learning

Each first-layer hidden unit computes o(w; x)
Here is one of the weight vectors (also called a feature).
It's reshaped into an image, with gray = 0, white = +, black =

To compute w,-Tx, multiply the corresponding pixels, and sum the result.

17 /25

-
Feature Learning

There are 256 first-level features total. Here are some of them.

18/25

Levels of Abstraction

The psychological profiling [of a programmer] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the
small and to see something in the large.

— Don Knuth

. o

Levels of Abstraction

When you design neural networks and machine learning algorithms, you'll
need to think at multiple levels of abstraction.

networks

layers

vectorized operations

arithmetic operations

. —_—

Expressive Power

@ We've seen that there are some functions that linear classifiers can't
represent. Are deep networks any better?

@ Any sequence of linear layers can be equivalently represented with a
single linear layer.
y = WOWRWW
—_——
Lw/

e Deep linear networks are no more expressive than linear regression!
o Linear layers do have their uses — stay tuned!

. o1z

Expressive Power

o Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function
arbitrarily well.

@ This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

o Even though RelLU is “almost” linear, it's nonlinear enough!

. 2%

Expressive Power

Universality for binary inputs and targets:
@ Hard threshold hidden units, linear output

o Strategy: 2P hidden units, each of which responds to one particular
input configuration

@ Only requires one hidden layer, though it needs to be extremely wide!

. "

Expressive Power

@ What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights and
biases:

1

08

0.6

04}

0.2

R e R T R -4 -3 -2 -

y =o0(x) y = 0o(5x)
@ This is good: logistic units are differentiable, so we can tune them
with gradient descent. (Stay tuned!)

] 2425

Expressive Power

@ Limits of universality

. 2525

Expressive Power

@ Limits of universality

e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

. —_—

Expressive Power

@ Limits of universality
e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

@ We've derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

o This suggests you might be able to learn compact representations of
some complicated functions

. —_—

