CS490/590 Lecture 5: Multilayer Perceptrons

Eren Gultepe
Department of Computer Science SIUE
Spring 2020

Adapted from Roger Grosse and Jimmy Ba

Overview

- Recall the simple neuron-like unit:

- Linear regression and logistic regression can each be viewed as a single unit.
- These units are much more powerful if we connect many of them into a neural network.

Limits of Linear Classification

- Single neurons (linear classifiers) are very limited in expressive power.
- XOR is a classic example of a function that's not linearly separable.

- There's an elegant proof using convexity.

Limits of Linear Classification

Convex Sets

- A set \mathcal{S} is convex if any line segment connecting points in \mathcal{S} lies entirely within \mathcal{S}. Mathematically,

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{S} \quad \Longrightarrow \quad \lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in \mathcal{S} \quad \text { for } 0 \leq \lambda \leq 1 .
$$

- A simple inductive argument shows that for $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathcal{S}$, weighted averages, or convex combinations, lie within the set:

$$
\lambda_{1} \mathbf{x}_{1}+\cdots+\lambda_{N} \mathbf{x}_{N} \in \mathcal{S} \quad \text { for } \lambda_{i}>0, \quad \lambda_{1}+\cdots \lambda_{N}=1
$$

Limits of Linear Classification

Showing that XOR is not linearly separable

- Half-spaces are obviously convex.
- Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space.

- But the intersection can't lie in both half-spaces. Contradiction!

Limits of Linear Classification

A more troubling example

- These images represent 16 -dimensional vectors. White $=0$, black $=1$.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!

Limits of Linear Classification

A more troubling example

- These images represent 16 -dimensional vectors. White $=0$, black $=1$.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!
- Suppose there's a feasible solution. The average of all translations of A is the vector $(0.25,0.25, \ldots, 0.25)$. Therefore, this point must be classified as A .
- Similarly, the average of all translations of B is also $(0.25,0.25, \ldots, 0.25)$. Therefore, it must be classified as B. Contradiction!

Limits of Linear Classification

- Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for XOR:

	$\psi(\mathbf{x})=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{1} x_{2}\end{array}\right)$				
x_{1}	x_{2}	$\phi_{1}(\mathbf{x})$	$\phi_{2}(\mathbf{x})$	$\phi_{3}(\mathbf{x})$	t
0	0	0	0	0	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	1	1	1	0

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions. Instead, we'll use neural nets to learn nonlinear hypotheses directly.

Multilayer Perceptrons

- We can connect lots of units together into a directed acyclic graph.
- This gives a feed-forward neural network. That's in contrast to recurrent neural networks, which can have cycles. (We'll talk about those later.)
- Typically, units are grouped together into layers.

Multilayer Perceptrons

- Each layer connects N input units to M output units.
- In the simplest case, all input units are connected to all output units. We call this a fully connected layer. We'll consider other layer types later.
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.
- Recall from softmax regression: this means we need an $M \times N$ weight matrix.
- The output units are a function of the input units:

$$
\mathbf{y}=f(\mathbf{x})=\phi(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

- A multilayer network consisting of fully connected layers is called a multilayer perceptron. Despite the name, it has nothing to do with perceptrons!

Multilayer Perceptrons

Some activation functions:

Linear
$y=z$

Rectified Linear Unit (ReLU)

$$
y=\max (0, z)
$$

Soft ReLU

$$
y=\log 1+e^{z}
$$

Multilayer Perceptrons

Some activation functions:

Hard Threshold

$$
y= \begin{cases}1 & \text { if } z>0 \\ 0 & \text { if } z \leq 0\end{cases}
$$

Logistic

$$
y=\frac{1}{1+e^{-z}}
$$

Hyperbolic Tangent (tanh)

$$
y=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
$$

Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

Multilayer Perceptrons

Multilayer Perceptrons

- Each layer computes a function, so the network computes a composition of functions:

$$
\begin{aligned}
\mathbf{h}^{(1)} & =f^{(1)}(\mathbf{x}) \\
\mathbf{h}^{(2)} & =f^{(2)}\left(\mathbf{h}^{(1)}\right) \\
& \vdots \\
\mathbf{y} & =f^{(L)}\left(\mathbf{h}^{(L-1)}\right)
\end{aligned}
$$

- Or more simply:

$$
\mathbf{y}=f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x})
$$

- Neural nets provide modularity: we can implement each layer's computations as a black box.

Feature Learning

- Neural nets can be viewed as a way of learning features:

Feature Learning

- Neural nets can be viewed as a way of learning features:
- The goal:

Feature Learning

Input representation of a digit ： 784 dimensional vector．

	a	a．a	a．a	a．a	－．a	a	a．a	a．a	a．a	a	．a	a	．a	．a	as	2．	an	as	．	a．a	a．	d．	a．a	a．	0.	a．d
a．a	a．a	a．a	a．a	a．a	0．a	a．a	a．a	a．a	a．a	．a	．	a．a	a．a	． 1	a．a	a． 1	a．a	a．a	a．a							
a．a	a．a	a．a	a．a	a． 0	a．a	a	a．a	a．a	a．a	a． 9	a．a	a．a	．	a．a	a．a	a．a	a．a	a．a	a． 0	a． 8	a．a	a．	a．a	a．a	a．a	0.0
a．a	0.	0.0	a．a	a．	a．	a．	a．a	0.0																		
a．a	a．a	0．a	a．a	a．a	0．a	a．a	．	a．a	a．a	a	．	a．a	a．a	． 1	a．a	a．a	．a	0.0	．0	0.0	1.	a．	a．d	a．d	a．d	0.0
a．a	a． 1	a．a	a． 9	a．a	a．a	a．a	a．a	．	a． 9	a． 8	0.2	221.	115.9	0.0	a．a	a，	a．a	a．a	a．a	0.9	a．	a．	a．a	0.0	0.0	a．a
a．a	a．a	0.9	a．a	a．a	a．a	a．a	a	a	a．a	a．a	51.3	24．	148.9	a．a	－	1．	a．a	22.9	230.0	1348	0.	0.	0.0	9.	0.	a．a
a．a	a．a	0.8	a．a	a	．	a．a	a	．	．	a． 0	168.9	54．a	115.9	a．a	－	．a	0.1	24.0	253．a	1304.	a．	a.	a．	a．	a．	a．a
a．a	a．a	a．a	a．a	a．a	a．8	a．a	a．a	c．a	a．a	51	234.0	254．a	1.0	a．a	a．a	a．a	a．a	21.	23．a	1348	a．a	a．	a．a	a．a	a．	a．a
a．a	a．a	a．a	a． 1	－． 1	－． 8	a． 1	a．a	a． 0	13.3	221	54．a	160.4	a．a	a．a	a．a	a．d	a． 0	141	284．a	127.3	0.0	d．d	d． 0	d．a	0.0	a．d
－	a．a	a．a	a．a	a．a	a．a	a． 2	a． 4	a．a	144．a	51．a	251．a	76.9	a．a	a．a	a．a	a．a	a．a	2n－a	251．a	13.1	0.	0.	a．a	dad	d．a	0.0
a．a	a．a	0.	a．a	a．a	a．a	a．a	a	15.1	212．	ธัコ	．	a．a	． 1	a．a	－	0.0	a．	2970	251．	7.	a． 0	a．	a．	a．	a．	a．a
a．a	a．a	a．a	a.	a．a	a．a	a．a	a．a	22	－12a	212.0	13.9	－	a．a	a．a	a．a	a．a	34.8	242.3	25	a．a	a．	a．d	a．a	d．	a．a	a．a
a．a	a．a	a．a	a．a	a．d	0.0	7.0	170.		54．a	45.4	a．a	a．a	a．a	a．a	a．a	a．a		54．a	2540	a．a	a．a	0.0	a．a	a．a	a．a	a．a
a．a	d．	a．	a．a	a．a	．	24.3	5	3－a	51．	234．9	16	47.1	47.9	26.9	a．a	a．	138.1	51．	\％	a．a	a．a	a．a	0.	0.	a． 0	a．a
a．a	a．	0.9	a．a	a．a	a．a	24.1	24.1	504．a	51．a	51．a	51． 2	254	玉5．	22	74.	203	215	$53 . a$	1770	．a	a．	a．	a．a	a．	a．	a．a
a．a	84.9	181.3	11.9	248.9	218.9	254.9	253．a	251．	253．	254	E	244.3	62.1	a．a	0.0	a．d	a．d	a．a	0.0	a．a						
a．a	a．a	0.0	a．a	a．a	a．a	a．a	a．a	a． 0	a．a	a．a	a．a	23.3	142.9	12.4	23.3	170.0	54．a	230	a．a	a	a．a	a．d	a．a	． 0	a．a	a．a
a．a	a．a	a．a	a．	a．a	a． 2	a．a	153 A	51． 1	213	a．a	a．a	a．	a．	a．	a．a	0.0	a． 0									
a．a	a． 0	a．a	a．a	a．a	a．a	a．a	a． 0	a．a	170	251．a	177.	a．a	a．a	a．d	a．d	a．a	d．a	a．	a．a							
a．	a．d	a．a	a．a	d．a	0．8	．	0.	a．a	a．a	a． 0	a．a	a．	a． 2	a．a	a．a	220	551．0	177	a．a	ata	a．	a．	d．a	a．	a．a	a．a
a．a	a．a	a．a	a．a	a．a	a．a	a． 2	a． 0	a．a	a．a	a． 9	．a	a． 1	a．a	a．a	¢0．a	Z	254．a	50.1	a．a	a． 1	a．a	a．a	a．a	a．a	a．a	a．a
a．a	a．a	a．a	a．a	a．a	0.8	a．a	23． 2	234	251．a	45．a	a．a	a．a	a．a	a．0	a．a	a．a	a．a	a．a								
a．a	a．a	a．a	d．	a．a	a．	a．a	a．a	a． 8	a．	a．a	an	a．a	a．a	a．a	12.0	204	215.0	20	a．a	a．a	a．	a．	a．d	a．	a．d	a．a
a．a	a．a	a．a	a．a	a．a	a．a	a． 2	a．a	a．a	a．a	a． 0	a．a	a．a	a． 0	a．a	a．a	185.9	$105 . a$	a．a	a．a	a．a	a．a	0.1	a．a	a．a	a．a	a．a
a．a	a．a	a． 0	a．a	a． 8	a．a																					
a．a	a．a	a．a	a．a	a．a	0．a	a．	a．	a．a	a．	a．a	an	a．a	a．a	a．	0	0.	0.	a．	a．	a．a	a．a	a．	a．a	a．a	a．a	a．a
．	a．a	a．a	a．a	a．a	a．a	a．a	0.0	a．a	a．a	1.8	a． 2	a．a	a．	a．	a．	a.	a．a	a．	a．a	a.	a．a	a．	a．a	a．a	a．a	

Feature Learning

Each first-layer hidden unit computes $\sigma\left(\mathbf{w}_{i}^{T} \mathbf{x}\right)$
Here is one of the weight vectors (also called a feature).
It's reshaped into an image, with gray $=0$, white $=+$, black $=-$.
To compute $\mathbf{w}_{i}^{T} \mathbf{x}$, multiply the corresponding pixels, and sum the result.

Feature Learning

There are 256 first-level features total. Here are some of them.

Levels of Abstraction

The psychological profiling [of a programmer] is mostly the ability to shift levels of abstraction, from low level to high level. To see something in the small and to see something in the large.

- Don Knuth

Levels of Abstraction

When you design neural networks and machine learning algorithms, you'll need to think at multiple levels of abstraction.

Expressive Power

- We've seen that there are some functions that linear classifiers can't represent. Are deep networks any better?
- Any sequence of linear layers can be equivalently represented with a single linear layer.

$$
\mathbf{y}=\underbrace{\mathbf{W}^{(3)} \mathbf{W}^{(2)} \mathbf{W}^{(1)}}_{\triangleq \mathbf{W}^{\prime}} \mathbf{x}
$$

- Deep linear networks are no more expressive than linear regression!
- Linear layers do have their uses - stay tuned!

Expressive Power

- Multilayer feed-forward neural nets with nonlinear activation functions are universal approximators: they can approximate any function arbitrarily well.
- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
- Even though ReLU is "almost" linear, it's nonlinear enough!

Expressive Power

Universality for binary inputs and targets:

- Hard threshold hidden units, linear output
- Strategy: 2^{D} hidden units, each of which responds to one particular input configuration

x_{1}	x_{2}	x_{3}	t
	\vdots		\vdots
-1	-1	1	-1
-1	1	-1	1
-1	1	1	1
	\vdots		\vdots

- Only requires one hidden layer, though it needs to be extremely wide!

Expressive Power

- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:

$y=\sigma(x)$

$y=\sigma(5 x)$
- This is good: logistic units are differentiable, so we can tune them with gradient descent. (Stay tuned!)

Expressive Power

- Limits of universality

Expressive Power

- Limits of universality
- You may need to represent an exponentially large network.
- If you can learn any function, you'll just overfit.
- Really, we desire a compact representation!

Expressive Power

- Limits of universality
- You may need to represent an exponentially large network.
- If you can learn any function, you'll just overfit.
- Really, we desire a compact representation!
- We've derived units which compute the functions AND, OR, and NOT. Therefore, any Boolean circuit can be translated into a feed-forward neural net.
- This suggests you might be able to learn compact representations of some complicated functions

