CS490/590 Lecture 3: Linear Models

Eren Gultepe
 Department of Computer Science SIUE

Adapted from Roger Grosse and Jimmy Ba

Overview

- Some canonical supervised learning problems:
- Regression: predict a scalar-valued target (e.g. stock price)
- Binary classification: predict a binary label (e.g. spam vs. non-spam email)
- Multiway classification: predict a discrete label (e.g. object category, from a list)
- A simple approach is a linear model, where you decide based on a linear function of the input vector.
- This lecture reviews linear models, plus some other fundamental concepts (e.g. gradient descent, generalization)
- This lecture moves very quickly because it's all review. But there are detailed course readings if you need more of a refresher.

Problem Setup

- Want to predict a scalar t as a function of a vector \mathbf{x}
- Given a dataset of pairs $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- The $\mathbf{x}^{(i)}$ are called input vectors, and the $t^{(i)}$ are called targets.

Problem Setup

- Model: y is a linear function of x :

$$
y=\mathbf{w}^{\top} \mathbf{x}+b
$$

- y is the prediction
- \mathbf{w} is the weight vector
- b is the bias
- w and b together are the parameters
- Settings of the parameters are called hypotheses

Problem Setup

- Loss function: squared error

$$
\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- $y-t$ is the residual, and we want to make this small in magnitude
- The $\frac{1}{2}$ factor is just to make the calculations convenient.

Problem Setup

- Loss function: squared error

$$
\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- $y-t$ is the residual, and we want to make this small in magnitude
- The $\frac{1}{2}$ factor is just to make the calculations convenient.
- Cost function: loss function averaged over all training examples

$$
\begin{aligned}
\mathcal{J}(w, b) & =\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right)^{2} \\
& =\frac{1}{2 N} \sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}+b-t^{(i)}\right)^{2}
\end{aligned}
$$

Problem Setup

Visualizing the contours of the cost function:

Vectorization

- We can organize all the training examples into a matrix \mathbf{X} with one row per training example, and all the targets into a vector \mathbf{t}.

one feature across
 all training examples

$$
\mathbf{X}=\left(\begin{array}{l}
\mathbf{x}^{(1) \top} \\
\mathbf{x}^{(2) \top} \\
\mathbf{x}^{(3) \top}
\end{array}\right)=\left(\begin{array}{c|c|cc}
\cline { 2 - 4 } & 0 & 3 & 0 \\
\hline 6 & -1 & 5 & 3 \\
\hline 2 & 5 & -2 & 8
\end{array}\right) \quad \begin{gathered}
\text { one training } \\
\text { example (vector) }
\end{gathered}
$$

- Computing the predictions for the whole dataset:

$$
\mathbf{X} \mathbf{w}+b \mathbf{1}=\left(\begin{array}{c}
\mathbf{w}^{\top} \mathbf{x}^{(1)}+b \\
\vdots \\
\mathbf{w}^{\top} \mathbf{x}^{(N)}+b
\end{array}\right)=\left(\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(N)}
\end{array}\right)=\mathbf{y}
$$

Vectorization

- Computing the squared error cost across the whole dataset:

$$
\begin{aligned}
\mathbf{y} & =\mathbf{X} \mathbf{w}+b \mathbf{1} \\
\mathcal{J} & =\frac{1}{2 N}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

- In Python:

$$
\begin{aligned}
& y=n p \cdot \operatorname{dot}(x, w)+b \\
& \operatorname{cost}=n p \cdot \operatorname{sum}((y-t) * * 2) /(2 . * N)
\end{aligned}
$$

Solving the optimization problem

- We defined a cost function. This is what we'd like to minimize.
- Recall from calculus class: the minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the partial derivatives are all 0 .
- Two strategies for optimization:
- Direct solution: derive a formula that sets the partial derivatives to 0 . This works only in a handful of cases (e.g. linear regression).
- Iterative methods (e.g. gradient descent): repeatedly apply an update rule which slightly improves the current solution. This is what we'll do throughout the course.

Direct solution

- Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{h}
$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y

$$
\begin{aligned}
\frac{\partial y}{\partial w_{j}} & =\frac{\partial}{\partial w_{j}}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =x_{j} \\
\frac{\partial y}{\partial b} & =\frac{\partial}{\partial b}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =1
\end{aligned}
$$

Direct solution

- Chain rule for derivatives:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \frac{\partial y}{\partial w_{j}} \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left[\frac{1}{2}(y-t)^{2}\right] \cdot x_{j} \\
& =(y-t) x_{j} \\
\frac{\partial \mathcal{L}}{\partial b} & =y-t
\end{aligned}
$$

- We will give a more precise statement of the Chain Rule next week. It's actually pretty complicated.
- Cost derivatives (average over data points):

$$
\begin{aligned}
\frac{\partial \mathcal{J}}{\partial w_{j}} & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)} \\
\frac{\partial \mathcal{J}}{\partial b} & =\frac{1}{N} \sum_{i=1}^{N} y^{(i)}-t^{(i)}
\end{aligned}
$$

Gradient descent

- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.
- The gradient descent update decreases the cost function for small enough α :

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}} \\
& =w_{j}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

- α is a learning rate. The larger it is, the faster \mathbf{w} changes.
- We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001

Gradient descent

- This gets its name from the gradient:

$$
\nabla \mathcal{J}(\mathbf{w})=\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- This is the direction of fastest increase in \mathcal{J}.

Gradient descent

- This gets its name from the gradient:

$$
\nabla \mathcal{J}(\mathbf{w})=\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- This is the direction of fastest increase in \mathcal{J}.
- Update rule in vector form:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha \nabla \mathcal{J}(\mathbf{w}) \\
& =\mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

- Hence, gradient descent updates the weights in the direction of fastest decrease.

Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_ regression.pdf\#page=21

Gradient descent

- Why gradient descent, if we can find the optimum directly?
- GD can be applied to a much broader set of models
- GD can be easier to implement than direct solutions, especially with automatic differentiation software
- For regression in high-dimensional spaces, GD is more efficient than direct solution (matrix inversion is an $\mathcal{O}\left(D^{3}\right)$ algorithm).

Feature maps

- We can convert linear models into nonlinear models using feature maps.

$$
y=\mathbf{w}^{\top} \phi(\mathbf{x})
$$

- E.g., if $\boldsymbol{\psi}(x)=\left(1, x, \cdots, x^{D}\right)^{\top}$, then y is a polynomial in x. This model is known as polynomial regression:

$$
y=w_{0}+w_{1} x+\cdots+w_{D} x^{D}
$$

- This doesn't require changing the algorithm - just pretend $\psi(x)$ is the input vector.
- We don't need an expicit bias term, since it can be absorbed into ψ.
- Feature maps let us fit nonlinear models, but it can be hard to choose good features.
- Before deep learning, most of the effort in building a practical machine learning system was feature engineering.

Feature maps

$$
y=w_{0}
$$

$y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}$

$$
y=w_{0}+w_{1} x
$$

$$
y=w_{0}+w_{1} x+\cdots+w_{9} x^{9}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Generalization

Underfitting : The model is too simple - does not fit the data.

Overfitting : The model is too complex - fits perfectly, does not generalize.

Generalization

- We would like our models to generalize to data they haven't seen before
- The degree of the polynomial is an example of a hyperparameter, something we can't include in the training procedure itself
- We can tune hyperparameters using a validation set:

training set	validation set	test set

Classification

Binary linear classification

- classification: predict a discrete-valued target
- binary: predict a binary target $t \in\{0,1\}$
- Training examples with $t=1$ are called positive examples, and training examples with $t=0$ are called negative examples. Sorry.
- linear: model is a linear function of \mathbf{x}, thresholded at zero:

$$
\begin{aligned}
z & =\mathbf{w}^{T} \mathbf{x}+b \\
\text { output } & = \begin{cases}1 & \text { if } z \geq 0 \\
0 & \text { if } z<0\end{cases}
\end{aligned}
$$

Logistic Regression

- We can't optimize classification accuracy directly with gradient descent because it's discontinuous.
- Instead, we typically define a continuous surrogate loss function which is easier to optimize. Logistic regression is a canonical example of this, in the context of classification.
- The model outputs a continuous value $y \in[0,1]$, which you can think of as the probability of the example being positive.

Logistic Regression

- There's obviously no reason to predict values outside [0, 1]. Let's squash y into this interval.
- The logistic function is a kind of sigmoidal, or S-shaped, function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- A linear model with a logistic nonlinearity is known as log-linear:

$$
\begin{aligned}
& z=\mathbf{w}^{\top} \mathbf{x}+b \\
& y=\sigma(z)
\end{aligned}
$$

- Used in this way, σ is called an activation function, and z is called the logit.

Logistic Regression

- Because $y \in[0,1]$, we can interpret it as the estimated probability that $t=1$.
- Being 99% confident of the wrong answer is much worse than being 90% confident of the wrong answer. Cross-entropy loss captures this intuition:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(y, t) & = \begin{cases}-\log y & \text { if } t=1 \\
-\log (1-y) & \text { if } t=0\end{cases} \\
& =-t \log y-(1-t) \log (1-y)
\end{aligned}
$$

- Aside: why does it make sense to think of y as a probability? Because cross-entropy loss is a proper scoring rule, which means the optimal y is the true probability.

Logistic Regression

- Logistic regression combines the logistic activation function with cross-entropy loss.

$$
\begin{aligned}
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
y & =\sigma(z) \\
& =\frac{1}{1+e^{-z}} \\
\mathcal{L}_{\mathrm{CE}} & =-t \log y-(1-t) \log (1-y)
\end{aligned}
$$

- Interestingly, the loss asymptotes to a linear function of the logit z.
- Full derivation in the readings.

Multiclass Classification

- What about classification tasks with more than two categories?

$$
\begin{aligned}
& 0001111112 \\
& \partial 22 \alpha 227323 \\
& 3444445535 \\
& 4<77777888 \\
& 888894999
\end{aligned}
$$

Multiclass Classification

- Targets form a discrete set $\{1, \ldots, K\}$.
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

$$
\mathbf{t}=\underbrace{(0, \ldots, 0,1,0, \ldots, 0)}_{\text {entry } k \text { is } 1}
$$

Multiclass Classification

- Now there are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix \mathbf{W}.
- Also, we have a K-dimensional vector \mathbf{b} of biases.
- Linear predictions:

$$
z_{k}=\sum_{j} w_{k j} x_{j}+b_{k}
$$

- Vectorized:

$$
\mathbf{z}=\mathbf{W} \mathbf{x}+\mathbf{b}
$$

Multiclass Classification

- A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

$$
y_{k}=\operatorname{softmax}\left(z_{1}, \ldots, z_{K}\right)_{k}=\frac{e^{z_{k}}}{\sum_{k^{\prime}} e^{z_{k^{\prime}}}}
$$

- The inputs z_{k} are called the logits.
- Properties:
- Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
- If one of the z_{k} 's is much larger than the others, $\operatorname{softmax}(\mathbf{z})$ is approximately the argmax. (So really it's more like "soft-argmax".)
- Exercise: how does the case of $K=2$ relate to the logistic function?
- Note: sometimes $\sigma(\mathbf{z})$ is used to denote the softmax function; in this class, it will denote the logistic function applied elementwise.

Multiclass Classification

- If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(\mathbf{y}, \mathbf{t}) & =-\sum_{k=1}^{K} t_{k} \log y_{k} \\
& =-\mathbf{t}^{\top}(\log \mathbf{y})
\end{aligned}
$$

where the \log is applied elementwise.

- Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-entropy function.

Multiclass Classification

- Softmax regression, also called multiclass logistic regression:

$$
\begin{aligned}
\mathbf{z} & =\mathbf{W} \mathbf{x}+\mathbf{b} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{z}) \\
\mathcal{L}_{\mathrm{CE}} & =-\mathbf{t}^{\top}(\log \mathbf{y})
\end{aligned}
$$

- It's possible to show the gradient descent updates have a convenient form:

$$
\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial \mathbf{z}}=\mathbf{y}-\mathbf{t}
$$

