CS490/590 Lecture 3: Linear Models

Eren Gultepe
Department of Computer Science
SIUE

Adapted from Roger Grosse and Jimmy Ba

1/30

Overview

@ Some canonical supervised learning problems:
o Regression: predict a scalar-valued target (e.g. stock price)
e Binary classification: predict a binary label (e.g. spam vs. non-spam
email)
o Multiway classification: predict a discrete label (e.g. object category,
from a list)
@ A simple approach is a linear model, where you decide based on a
linear function of the input vector.

@ This lecture reviews linear models, plus some other fundamental
concepts (e.g. gradient descent, generalization)

@ This lecture moves very quickly because it's all review. But there are
detailed course readings if you need more of a refresher.

. 250

|
Problem Setup

4.0

35
3.0 ° g

25

15
1.0

0.5

0.0

@ Want to predict a scalar t as a function of a vector x
o Given a dataset of pairs {(x(), t())}N

o The x(!) are called input vectors, and the t() are called targets.

] 3/30

|
Problem Setup

Data space Weight space
40 3.0
35 25
3.0 .)3,/;"‘\ 2.0
25 . /,:// 15 .
>2.0 . /MO' e
15 /'/ P 05
1.0 e 4\ 0.0
I
05 o5 T————
00 1] 3 7 5 OS5 60 05 10 15 20
X w

Model: y is a linear function of x:

y = w'x+b
@ y is the prediction
@ w is the weight vector
@ b is the bias
@ w and b together are the parameters
o

Settings of the parameters are called hypotheses

] 4/30

|
Problem Setup

o Loss function: squared error

L0t = 50— 02

@ y — tis the residual, and we want to make this small in magnitude

@ The % factor is just to make the calculations convenient.

. 5/30

|
Problem Setup

o Loss function: squared error

L0t = 50— 02

@ y — tis the residual, and we want to make this small in magnitude

@ The % factor is just to make the calculations convenient.
@ Cost function: loss function averaged over all training examples

1 L . N2
Twb) = 55 2 (0 =)
1 L) N2
= W E (WTX(’) + b — t(’))

i=1

. 5/30

Problem Setup

Visualizing the contours of the cost function:

4.0
3.5
3.0
2.5
>2.0

15

1.0¢

0.5

0.0
0

residuals I

.

.

3.0

2.

n

2.

=)

1.

n

1

=)

0.

n

0.

=)

-0.5

-1.0

~1.0

—0.

5 0.0 0.5 1.0 15 2
w

.0

Vectorization

@ We can organize all the training examples into a matrix X with one
row per training example, and all the targets into a vector t.

one feature across
all training examples

x(MT 80| 3 0 N
X=1x E z; 1 - g _51 52 g ex;):wep}(;a(l\r/“eré?o)
X _

@ Computing the predictions for the whole dataset:

w'x(M 4+ p y@
Xw + bl = : = : =y
w'x(N) 4 p y(N)

. 7%

Vectorization

@ Computing the squared error cost across the whole dataset:
y = Xw + bl
J = 7||y —t|?

@ In Python:

y = np.dot(X, w) + b
cost = Ap.sum((y - £) ** 2) / (2. * N)

. o750

Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: the minimum of a smooth function (if it
exists) occurs at a critical point, i.e. point where the partial
derivatives are all 0.

@ Two strategies for optimization:

e Direct solution: derive a formula that sets the partial derivatives to 0.
This works only in a handful of cases (e.g. linear regression).

o lIterative methods (e.g. gradient descent): repeatedly apply an update
rule which slightly improves the current solution. This is what we'll do

throughout the course.

. o750

Direct solution

@ Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

f(x1 4+ h,x2) — f(x1,x2)
By | x102) = fim, h

@ To compute, take the single variable derivatives, pretending the other
arguments are constant.
@ Example: partial derivatives of the prediction y

8y _
a\/\/] avvj |:Z,W/X/ :|
=X

d
=% [Z wjr Xjr + b]
j/

Il
—

] 10/30

Direct solution

@ Chain rule for derivatives:

oc _dc oy
8W_,-_dy8vv_,-
d J1)
= o-0?]
=(y—t)x
9L _, 4
ab 7

@ We will give a more precise statement of the Chain Rule next week.

It's actually pretty complicated.
o Cost derivatives (average over data points):

ow;

N
OF LSy —) D
N i=1

N
g 1 N
o w2

] 11/30

Gradient descent

o Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.
e We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.
@ The gradient descent update decreases the cost function for small
enough «:
_ _ N
W < wj — aa—wj
N .
= wj = 1 > = D))
i=1
@ « is a learning rate. The larger it is, the faster w changes.
o We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001

. 12730

Gradient descent

@ This gets its name from the gradient:

o7
N "
VI (w) = w :
o)
By

o This is the direction of fastest increase in J.

13/30

Gradient descent

@ This gets its name from the gradient:

o7

0T "
VI (w) = w :
o)

By

o This is the direction of fastest increase in J.

@ Update rule in vector form:
W w— onJ()

_W_fz JIOING

@ Hence, gradient descent updates the weights in the direction of

fastest decrease.
13/30

Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/1lec/W01/linear_
regression.pdf#page=21

14 /30

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21

Gradient descent

@ Why gradient descent, if we can find the optimum directly?
e GD can be applied to a much broader set of models
e GD can be easier to implement than direct solutions, especially with
automatic differentiation software
e For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).

. 15730

Feature maps

@ We can convert linear models into nonlinear models using feature
maps.
-
y=w ¢(x)
o Eg.,if(x)=(1, x, ---,xP)T, then y is a polynomial in x. This
model is known as polynomial regression:

y = W0+W1x+---+WDxD

@ This doesn't require changing the algorithm — just pretend ¥ (x) is
the input vector.

@ We don’t need an expicit bias term, since it can be absorbed into .

@ Feature maps let us fit nonlinear models, but it can be hard to choose
good features.
o Before deep learning, most of the effort in building a practical machine
learning system was feature engineering.

. 16730

Feature maps

Yy =w Yy = W + wix

0 . 1

0 1 0 1

T x

-Pattern Recognition and Machine Learning, Christopher Bishop.

] 17/30

Generalization

Underfitting : The model is too simple - does not fit the data.

1 00 M=0

-1

. -

Generalization

@ We would like our models to generalize to data they haven't seen
before

@ The degree of the polynomial is an example of a hyperparameter,
something we can't include in the training procedure itself

@ We can tune hyperparameters using a validation set:

‘ validation

set ’ test set

‘ training set

‘ train w/ degree 1 ’—»‘ err=7.3 ‘ X
’ train w/ degree 3 ’—v‘ err=1.1 '\/—»
‘ train w/ degree 10 ’—»’ err=10.5 ‘ x

. 19730

Classification

Binary linear classification

o classification: predict a discrete-valued target
@ binary: predict a binary target t € {0,1}
e Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

@ linear: model is a linear function of x, thresholded at zero:
z=w'x+b

tout = 1 ifz>0
OWPUL =190 ifz <0

. 2030

Logistic Regression

@ We can't optimize classification accuracy directly with gradient
descent because it's discontinuous.

@ Instead, we typically define a continuous surrogate loss function which
is easier to optimize. Logistic regression is a canonical example of
this, in the context of classification.

@ The model outputs a continuous value y € [0, 1], which you can think
of as the probability of the example being positive.

] 21/30

Logistic Regression

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

@ The logistic function is a kind of sigmoidal, or 0
S-shaped, function: 05
1 0.2
o(z) = ————
() 1 + e*Z 003 F— 0 2 3

@ A linear model with a logistic nonlinearity is known as log-linear:

z=w'x+b

y =0(z)
@ Used in this way, o is called an activation function, and z is called the
logit.
]

22/30

Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ Being 99% confident of the wrong answer is much worse than being
90% confident of the wrong answer. Cross-entropy loss captures this
intuition:

IS

w

| —logy ift=1
‘CCE(y’t)_{ ~log(1—y) ift=0

= —tlogy — (1 —t)log(1l —y)

2

cross-entropy loss
-
Il
_
-
Il
o

1

8.0 0.2 0.4 0.6 0.8 1.0
y

@ Aside: why does it make sense to think of y as a probability? Because
cross-entropy loss is a proper scoring rule, which means the optimal y
is the true probability.

. -

Logistic Regression

@ Logistic regression combines the logistic activation function with
cross-entropy loss.

— logistic + CE

z = wa+ b
y =o0(z)
_ 1
14 ez
Lcg = —tlogy — (1 —t)log(l —y)

@ Interestingly, the loss asymptotes to a linear function of the logit z.
o Full derivation in the readings.

] 24/30

Multiclass Classification

@ What about classification tasks with more than two categories?

ouzen 1233

216294970659

AV WA RS

89378409497

. -

Multiclass Classification

o Targets form a discrete set {1,..., K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0)

~
entry k is 1

. 2630

Multiclass Classification

@ Now there are D input dimensions and K output dimensions, so we
need K x D weights, which we arrange as a weight matrix W.

@ Also, we have a K-dimensional vector b of biases.

@ Linear predictions:

ZK = Z Wi Xj + by

@ Vectorized:

. -

Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:
ek

Zk/ e

yk = softmax(zy, ..., zx)k =

@ The inputs zx are called the logits.
@ Properties:
o Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
o If one of the z;'s is much larger than the others, softmax(z) is
approximately the argmax. (So really it's more like “soft-argmax”.)
o Exercise: how does the case of K = 2 relate to the logistic function?
o Note: sometimes o(z) is used to denote the softmax function; in this

class, it will denote the logistic function applied elementwise.

. -

Multiclass Classification

o If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(yt) == tklogy
k=1

= —t' (logy),

where the log is applied elementwise.

@ Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

. 29730

Multiclass Classification

@ Softmax regression, also called multiclass logistic regression:

z=Wx+b

y = softmax(z)
Lcg = —t! (logy)

@ It's possible to show the gradient descent updates have a convenient
form:

0Lce
0z

y—t

. 3030

