
CS490/590 Lecture 3: Linear Models

Eren Gultepe 
Department of Computer Science 

SIUE

Adapted from Roger Grosse and Jimmy Ba

1 / 30



Overview

Some canonical supervised learning problems:

Regression: predict a scalar-valued target (e.g. stock price)
Binary classification: predict a binary label (e.g. spam vs. non-spam
email)
Multiway classification: predict a discrete label (e.g. object category,
from a list)

A simple approach is a linear model, where you decide based on a
linear function of the input vector.

This lecture reviews linear models, plus some other fundamental
concepts (e.g. gradient descent, generalization)

This lecture moves very quickly because it’s all review. But there are
detailed course readings if you need more of a refresher.

2 / 30



Problem Setup

Want to predict a scalar t as a function of a vector x

Given a dataset of pairs {(x(i), t(i))}Ni=1

The x(i) are called input vectors, and the t(i) are called targets.

3 / 30



Problem Setup

Model: y is a linear function of x :

y = w>x + b

y is the prediction

w is the weight vector

b is the bias

w and b together are the parameters

Settings of the parameters are called hypotheses
4 / 30



Problem Setup

Loss function: squared error

L(y , t) =
1

2
(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
w>x(i) + b − t(i)

)2

5 / 30



Problem Setup

Loss function: squared error

L(y , t) =
1

2
(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
w>x(i) + b − t(i)

)2

5 / 30



Problem Setup

Visualizing the contours of the cost function:

6 / 30



Vectorization

We can organize all the training examples into a matrix X with one
row per training example, and all the targets into a vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

w>x(1) + b
...

w>x(N) + b

 =

y (1)

...

y (N)

 = y

7 / 30



Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2N
‖y − t‖2

In Python:

8 / 30



Solving the optimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: the minimum of a smooth function (if it
exists) occurs at a critical point, i.e. point where the partial
derivatives are all 0.

Two strategies for optimization:

Direct solution: derive a formula that sets the partial derivatives to 0.
This works only in a handful of cases (e.g. linear regression).
Iterative methods (e.g. gradient descent): repeatedly apply an update
rule which slightly improves the current solution. This is what we’ll do
throughout the course.

9 / 30



Direct solution

Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

∂

∂x1
f (x1, x2) = lim

h→0

f (x1 + h, x2)− f (x1, x2)

h

To compute, take the single variable derivatives, pretending the other
arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′

wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′

wj′xj′ + b


= 1

10 / 30



Direct solution

Chain rule for derivatives:
∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj

∂L
∂b

= y − t

We will give a more precise statement of the Chain Rule next week.
It’s actually pretty complicated.
Cost derivatives (average over data points):

∂J
∂wj

=
1

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

∂J
∂b

=
1

N

N∑
i=1

y (i) − t(i)

11 / 30



Gradient descent

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

The gradient descent update decreases the cost function for small
enough α:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

α is a learning rate. The larger it is, the faster w changes.
We’ll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001

12 / 30



Gradient descent

This gets its name from the gradient:

∇J (w) =
∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∇J (w)

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

13 / 30



Gradient descent

This gets its name from the gradient:

∇J (w) =
∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∇J (w)

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

13 / 30



Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_

regression.pdf#page=21

14 / 30

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21


Gradient descent

Why gradient descent, if we can find the optimum directly?

GD can be applied to a much broader set of models
GD can be easier to implement than direct solutions, especially with
automatic differentiation software
For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).

15 / 30



Feature maps

We can convert linear models into nonlinear models using feature
maps.

y = w>φ(x)

E.g., if ψ(x) = (1, x , · · · , xD)>, then y is a polynomial in x . This
model is known as polynomial regression:

y = w0 + w1x + · · ·+ wDx
D

This doesn’t require changing the algorithm — just pretend ψ(x) is
the input vector.

We don’t need an expicit bias term, since it can be absorbed into ψ.

Feature maps let us fit nonlinear models, but it can be hard to choose
good features.

Before deep learning, most of the effort in building a practical machine
learning system was feature engineering.

16 / 30



Feature maps

y = w0

x

t

M = 0

0 1

−1

0

1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

y = w0 + w1x + · · ·+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

17 / 30



Generalization

Underfitting : The model is too simple - does not fit the data.

x

t

M = 0

0 1

−1

0

1

Overfitting : The model is too complex - fits perfectly, does not generalize.

x

t

M = 9

0 1

−1

0

1

18 / 30



Generalization

We would like our models to generalize to data they haven’t seen
before

The degree of the polynomial is an example of a hyperparameter,
something we can’t include in the training procedure itself

We can tune hyperparameters using a validation set:

19 / 30



Classification

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t ∈ {0, 1}
Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

linear: model is a linear function of x, thresholded at zero:

z = wTx + b

output =

{
1 if z ≥ 0
0 if z < 0

20 / 30



Logistic Regression

We can’t optimize classification accuracy directly with gradient
descent because it’s discontinuous.

Instead, we typically define a continuous surrogate loss function which
is easier to optimize. Logistic regression is a canonical example of
this, in the context of classification.

The model outputs a continuous value y ∈ [0, 1], which you can think
of as the probability of the example being positive.

21 / 30



Logistic Regression

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoidal, or
S-shaped, function:

σ(z) =
1

1 + e−z

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

Used in this way, σ is called an activation function, and z is called the
logit.

22 / 30



Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.
Being 99% confident of the wrong answer is much worse than being
90% confident of the wrong answer. Cross-entropy loss captures this
intuition:

LCE(y , t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)

Aside: why does it make sense to think of y as a probability? Because
cross-entropy loss is a proper scoring rule, which means the optimal y
is the true probability.

23 / 30



Logistic Regression

Logistic regression combines the logistic activation function with
cross-entropy loss.

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

Interestingly, the loss asymptotes to a linear function of the logit z .

Full derivation in the readings.

24 / 30



Multiclass Classification

What about classification tasks with more than two categories?
It is very hard to say what makes a 2 Some examples from an earlier version of the net

25 / 30



Multiclass Classification

Targets form a discrete set {1, . . . ,K}.
It’s often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

26 / 30



Multiclass Classification

Now there are D input dimensions and K output dimensions, so we
need K × D weights, which we arrange as a weight matrix W.

Also, we have a K -dimensional vector b of biases.

Linear predictions:

zk =
∑
j

wkjxj + bk

Vectorized:
z = Wx + b

27 / 30



Multiclass Classification

A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

yk = softmax(z1, . . . , zK )k =
ezk∑
k ′ ezk′

The inputs zk are called the logits.

Properties:

Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
If one of the zk ’s is much larger than the others, softmax(z) is
approximately the argmax. (So really it’s more like “soft-argmax”.)
Exercise: how does the case of K = 2 relate to the logistic function?

Note: sometimes σ(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.

28 / 30



Multiclass Classification

If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

LCE(y, t) = −
K∑

k=1

tk log yk

= −t>(log y),

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

29 / 30



Multiclass Classification

Softmax regression, also called multiclass logistic regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

It’s possible to show the gradient descent updates have a convenient
form:

∂LCE

∂z
= y − t

30 / 30




