CS490/590 Lecture 8:
Optimization

Eren Gultepe
Department of Computer Science SIUE

Adapted from Roger Grosse

Overview

@ We've talked a lot about how to compute gradients. What do we
actually do with them?

@ Today's lecture: various things that can go wrong in gradient descent,
and what to do about them.

@ Let's take a break from equations and think intuitively.

@ Let's group all the parameters (weights and biases) of our network
into a single vector 6.

Optimization

Visualizing gradient descent in one dimension: w + w — 635

C (w>
edk ‘Nha\tu"""\
3wzl nibealization
1 Ocq
MUA(Mim
ﬂ\o 19‘&
M niman
W

—

@ The regions where gradient descent converges to a particular local
minimum are called basins of attraction.

Optimization

Visualizing two-dimensional optimization problems is trickier. Surface plots
can be hard to interpret:

Optimization

Recall:
@ Level sets (or contours): sets of points on which £(8) is constant
@ Gradient: the vector of partial derivatives

o€ o0& o0&
Vol =59 = <ael aez)

e points in the direction of maximum increase
e orthogonal to the level set

@ The gradient descent updates are opposite the gradient direction.

Optimization

/\\/\/7/ (ya,(l i @a“’

Local Minima

@ Recall: convex functions don't have local minima. This includes linear
regression and logistic regression.

@ But neural net training is not convex!

e Reason: if a function f is convex, then for any set of points x3, ..., Xy
in its domain ,

f()\1X1+~ . '+)\NXN) < >\1f(X1)+‘ . ~+>\Nf(XN) for \; > 0, Z)\, =1.

o Neural nets have a weight space symmetry: we can permute all the
hidden units in a given layer and obtain an equivalent solution.

e Suppose we average the parameters for all K! permutations. Then we
get a degenerate network where all the hidden units are identical.

o If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

@ Even though any multilayer neural net can have local optima, we usually
don’t worry too much about them.

|
Saddle points

At a saddle point % = 0, even though we are not at a minimum. Some
directions curve upwards, and others curve downwards.

When would saddle points be a problem?

|
Saddle points

At a saddle point % = 0, even though we are not at a minimum. Some
directions curve upwards, and others curve downwards.

When would saddle points be a problem?
o If we're exactly on the saddle point, then we're stuck.

o If we're slightly to the side, then we can get unstuck.

|
Saddle points

@ Suppose you have two hidden units with identical incoming and
outgoing weights.

o After a gradient descent update, they will still have identical weights.
By induction, they’ll always remain identical.

@ But if you perturbed them slightly, they can start to move apart.

@ Important special case: don't initialize all your weights to zero!
o Instead, use small random values.

Plateaux
A flat region is called a plateau. (Plural: plateaux)

RN T

e
\
X

Can you think of examples?

e

———

Plateaux

A flat region is called a plateau. (Plural: plateaux)

SR 12

e
\

Can you think of examples?
@ 0-1 loss
@ hard threshold activations

@ logistic activations & least squares

N
Plateaux

@ An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

o If ¢/(z) is always close to zero, then the weights will get stuck.

o If there is a ReLU unit whose input z; is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.

Ravines

Long, narrow ravines:

Rosenbrock

leglF]

Lots of sloshing around the walls, only a small derivative along the slope of
the ravine's floor.

Ravines

@ Suppose we have the following dataset for linear regression.

/\\ Vg f;\ N
W,.,(

X1 X2 t

114.8 0.00323 | 5.1

338.1 0.00183 | 3.2
98.8 0.00279 | 4.1 Wi =y X

R

W,

@ Which weight, wy or wy, will receive a larger gradient descent update?
@ Which one do you want to receive a larger update?

o Note: the figure vastly understates the narrowness of the ravine!

Ravines

@ Or consider the following dataset:

X1 Xo ‘ t
1003.2 1005.1 | 3.3
1001.1 1008.2 | 4.8

998.3 1003.4 | 2.9

Ravines

@ To avoid these problems, it's a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

X T Hy
gj

13

<

@ Hidden units may have non-centered activations, and this is harder to
deal with.
o One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
o A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.

Momentum

@ Unfortunately, even with these normalization tricks, narrow ravines
will be a fact of life. We need algorithms that are able to deal with
them.

@ Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

e up— o€
P pup—azy

0—0+p

@ « is the learning rate, just like in gradient descent.

@ 1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 17

Momentum

@ Unfortunately, even with these normalization tricks, narrow ravines
will be a fact of life. We need algorithms that are able to deal with
them.

@ Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

e up— o€
P pup—azy

0—0+p

@ « is the learning rate, just like in gradient descent.

@ 1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 17

o If 4 =1, conservation of energy implies it will never settle down.

Momentum

20
@ In the high curvature directions, the

gradients cancel each other out, so
momentum dampens the oscillations. 0

10

@ In the low curvature directions, the -10

gradients point in the same direction, —20
allowing the parameters to pick up speed.

—30
—30 —-20 —10 0 0 20

@ If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

a0
1—p 06

This suggests if you increase p, you should lower a to compensate.

@ Momentum sometimes helps a lot, and almost never hurts.

Ravines

@ Even with momentum and normalization tricks, narrow ravines are
still one of the biggest obstacles in optimizing neural networks.

@ Empirically, the curvature can be many orders of magnitude larger in
some directions than others!

@ An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

@ There is an optimization procedure called Adam which uses just a

little bit of curvature information and often works much better than
gradient descent. It's available in all the major neural net frameworks.

Learning Rate

@ The learning rate « is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

\

)

« too small: « too large:
slow progress oscillations

« much too large:
instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).

Training Curves

o To diagnose optimization problems, it's useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: it's very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can't guarantee convergence.

Metrics for Binary classification

@ Recall that the average of 0—1 loss is the error rate, or fraction
incorrectly classified.
» We noted we couldn’t optimize it, but it’s still a useful metric to
track.
» Equivalently, we can track the accuracy, or fraction correct.
» Typically, the error rate behaves similarly to the cross-entropy loss,
but this isn’t always the case.

e Another way to break down the accuracy:
» P=num positive; N=num negative; TP=true positives; TN=true
negatives

» FP=false positive or a type I error
» FN=false negative or a type II error

TP+TN TP+TN
" P+N TP+TN+FP+FN

e Discuss: When might accuracy present a misleading picture of
performance?

The limitations of accuracy

e Accuracy is highly sensitive to class imbalance.

» Suppose you're trying to screen patients for a particular disease,
and under the data generating distribution, 1% of patients have
that disease.

» How can you achieve 99% accuracy?

» You are able to observe a feature which is 10x more likely in a
patient who has cancer. Does this improve your accuracy?

@ Sensitivity and specificity are useful metrics even under class

imbalance.
> Sensitivity = m [True positive rate]
» Specificity = = J\? +rp |True negative rate]

v

What happens if our classification problem is not truly
(log-)linearly seperable?
How do we pick a threshold for y = o(x)?

v

Designing diagnostic tests

Criterion value

Without

disease With

disease
TF

FP

Testresult

@ You've developed a binary prediction model to indicate whether
someone has a specific disease

e What happens to sensitivity and specificity as you slide the
threshold from left to right?

Sensitivity and specificity

Specificity
True Megative rate

True Fositive rate
Sensitivity

Criterion value

o Tradeoff between sensitivity and specificity

Receiver Operating Characteristic (ROC) curve

Receiver Operating Characteristic (ROC) curve

100F
80:
603
40f

20

True Positive rate {Sensitivity)

D5t nnnannlonnlonnlnnnd
0 20 40 60 80 100
False Positive rate (100-Specificity)

@ y axis: sensitivity
e x axis: 100-specificity
e Area under the ROC curve (AUC) is a useful metric to track if a
binary classifier achieves a good tradeoff between sensitivity and
specificity.
]

Metrics for Multi-Class classification

@ You might also be interested in how frequently certain classes are

confused.

e Confusion matrix: K x K matrix; rows are true labels, columns
are predicted labels, entries are frequencies
@ Question: what does the confusion matrix look like if the classifier

is perfect?

actual class

© ©® N o g » W N

w

N o ¥ L

o

I

o 3 o0 112
4 6 1 {113
1 3 2 {107
0o o0 7 ‘100
o 6 175

1.2-97

101

118} »

113} »

100} o

predicted class

103} o

Stochastic Gradient Descent

@ So far, the cost function £ has been the average loss over the training
examples:

=

N N
1 i 1 i i
£0)= 1> L0 =5 Ly(,0),t1).
i=1 i=1

@ By linearity,
08 _1¢~ocl
08 N pt 00

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

@ Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!

Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

oLt

60—
< 0160

@ SGD can make significant progress before it has even looked at all the data!

@ Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

oL 1 N o %€
96 | " NZ 00 ~ 06

@ Problem: if we only look at one training example at a time, we can't exploit
efficient vectorized operations.

Stochastic Gradient Descent

o Compromise approach: compute the gradients on a medium-sized set
of training examples, called a mini-batch.

@ Each entire pass over the dataset is called an epoch.

@ Stochastic gradients computed on larger mini-batches have smaller
variance:

=%

S ort) S ort)
1 aﬁ]—lwr[az]_l

— = — var
S £ 20, | S

oLl
90;

i=1

@ The mini-batch size S is a hyperparameter that needs to be set.

e Too large: takes more memory to store the activations, and longer to
compute each gradient update

e Too small: can't exploit vectorization

e A reasonable value might be S = 100.

Stochastic Gradient Descent: Batch Size

@ The mini-batch size S is a hyperparameter that needs to be set.
o Large batches: converge in fewer weight updates because each
stochastic gradient is less noisy.
e Small batches: perform more weight updates per second because each
one requires less computation.
o Claim: If the wall-clock time were proportional to the number of
FLOPs, then S =1 would be optimal.
e 100 updates with S = 1 requires the same FLOP count as 1 update

with § = 100.
o Rewrite minibatch gradient descent as a for-loop:
S=1 S =100
For k=1,...,100: For k=1,...,100:
0, —0p_ 1 —aVI®(0;_1) 0 — 01 — 25VIT) (0)

o All else being equal, you'd prefer to compute the gradient at a fresher
value of 8. So S =1 is better.

N
Stochastic Gradient Descent: Batch Size

@ The reason we don't use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

@ Small batches: An update with S = 10 isn't much more expensive
than an update with S = 1.

o Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S.

@ Cartoon figure, not drawn to scale:

GPU
time per CPU training
weight examples
update per second
P
@ U/ CPU
batch size batch size

@ Since GPUs afford more parallelism, they saturate at a larger batch
size. Hence, GPUs tend to favor larger batch sizes.

N
Stochastic Gradient Descent: Batch Size

@ The convergence benefits of larger batches also see diminishing returns.
@ Small batches: large gradient noise, so large benefit from increased batch size

@ Large batches: SGD approximates the batch gradient descent update, so no
further benefit from variance reduction.

411 582PS 1 Reaen 0.1 Vaigtion Eror 11 Stepeto Reach 03 vagaion eror
2,5] ;
o1 \\
Small Batch Large Batch g2t _\.
& 2
& o s
full batch 2 3 i
/ cost 2 B < e
2 ety 2y
Batch Size Batch Size
full batch

gradient (b) Simple CNN on Fashion MNIST (¢) ResNet-8 on CIFAR-10

40 Steps to Reach 0.31 Validation AP

distribution
of stochastic
gradients T

.
2T g 27272

2 27272
Batch Size Batch Size

272

(¢) ResNet-50 on Open Images (£) Transformer on LM1B

@ Right: # iterations to reach target validation error as a function of batch size.
(Shallue et al., 2018)

Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downbhill on average.

batch gradient descent stochastic gradient descent

-
SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

)

o Typical strategy:

o Use a large learning rate early in training so you can get close to the
optimum
o Gradually decay the learning rate to reduce the fluctuations

-
SGD Learning Rate

@ Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

reduce
learning rate

error

epoch

-
RMSprop and Adam

Recall: SGD takes large steps in directions of high curvature and
small steps in directions of low curvature.
RMSprop is a variant of SGD which rescales each coordinate of the
gradient to have norm 1 on average. It does this by keeping an
exponential moving average s; of the squared gradients.
The following update is applied to each coordinate j independently:
5« (1=7)s + 131

a 0F
NGREXL
If the eigenvectors of the Hessian are axis-aligned (dubious
assumption), then RMSprop can correct for the curvature. In
practice, it typically works slightly better than SGD.

9j<—9j—

@ Adam = RMSprop + momentum
@ Both optimizers are included in TensorFlow, Pytorch, etc.

Recap

Problem | Diagnostics Workarounds
incorrect gradients | finite differences fix them, or use autodiff
local optima | (hard) random restarts
symmetries | visualize W initialize W randomly
slow progress | slow, linear training curve increase a;; momentum
instability | cost increases decrease «
oscillations | fluctuations in training curve | decrease o; momentum

fluctuations
dead/saturated units
ill-conditioning

fluctuations in training curve
activation histograms
(hard)

decay «; iterate averaging
initial scale of W; RelLU
normalization; momentum;
Adam; second-order opt.

