
CS490/590 Lecture 7:
Distributed Representatoins

Eren Gultepe
Department of Computer Science

SIUE

Adapted from Roger Grosse and Jimmy Ba

Overview

Today’s lecture: learning distributed representations of words

Let’s take a break from the math and see a real example of a neural
net.

We’ll see a lot more neural net architectures later in the course.

This is used in Natural Language Processing.

Language Modeling

Motivation: suppose we want to build a speech recognition system.

We’d like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

An observation model, represented as p(a | s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes’ Rule to infer a posterior
distribution over sentences given the speech signal:

p(s | a) =
p(s)p(a | s)∑
s′ p(s′)p(a | s′)

.

Language Modeling

Motivation: suppose we want to build a speech recognition system.

We’d like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

An observation model, represented as p(a | s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes’ Rule to infer a posterior
distribution over sentences given the speech signal:

p(s | a) =
p(s)p(a | s)∑
s′ p(s′)p(a | s′)

.

Language Modeling

In this lecture, we focus on learning a good distribution p(s) of sentences.
This problem is known as language modeling.

Assume we have a corpus of sentences s(1), . . . , s(N). The maximum
likelihood criterion says we want our model to maximize the probability
our model assigns to the observed sentences. We assume the sentences are
independent, so that their probabilities multiply.

max
N∏
i=1

p(s(i)).

Language Modeling

In maximum likelihood training, we want to maximize
∏N

i=1 p(s(i)).

The probability of generating the whole training corpus is vanishingly small
— like monkeys typing all of Shakespeare.

The log probability is something we can work with more easily. It also
conveniently decomposes as a sum:

log
N∏
i=1

p(s(i)) =
N∑
i=1

log p(s(i)).

Let’s use negative log probabilities, so that we’re working with
positive numbers.

Better trained monkeys are slightly more likely to type Hamlet!

Language Modeling

In maximum likelihood training, we want to maximize
∏N

i=1 p(s(i)).

The probability of generating the whole training corpus is vanishingly small
— like monkeys typing all of Shakespeare.

The log probability is something we can work with more easily. It also
conveniently decomposes as a sum:

log
N∏
i=1

p(s(i)) =
N∑
i=1

log p(s(i)).

Let’s use negative log probabilities, so that we’re working with
positive numbers.

Better trained monkeys are slightly more likely to type Hamlet!

Language Modeling

Probability of a sentence? What does that even mean?

A sentence is a sequence of words w1,w2, . . . ,wT . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wT) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . ,wT−1).

Therefore, the language modeling problem is equivalent to being able to

predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a context
of length 3,

p(wt |w1, . . . ,wt−1) = p(wt |wt−3,wt−2,wt−1).

Such a model is called memoryless.
Now it’s basically a supervised prediction problem. We need to predict the
conditional distribution of each word given the previous K .

When we decompose it into separate prediction problems this way, it’s called

an autoregressive model.

Language Modeling

Probability of a sentence? What does that even mean?

A sentence is a sequence of words w1,w2, . . . ,wT . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wT) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . ,wT−1).

Therefore, the language modeling problem is equivalent to being able to

predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a context
of length 3,

p(wt |w1, . . . ,wt−1) = p(wt |wt−3,wt−2,wt−1).

Such a model is called memoryless.
Now it’s basically a supervised prediction problem. We need to predict the
conditional distribution of each word given the previous K .

When we decompose it into separate prediction problems this way, it’s called

an autoregressive model.

N-Gram Language Models

One sort of Markov model we can learn uses a conditional probability table,
i.e.

cat and city · · ·
the fat 0.21 0.003 0.01

four score 0.0001 0.55 0.0001 · · ·
New York 0.002 0.0001 0.48

...
...

Maybe the simplest way to estimate the probabilities is from the empirical
distribution:

p(w3 = cat |w1 = the,w2 = fat) =
count(the fat cat)

count(the fat)

This is the maximum likelihood solution; we’ll see why later in the course.

The phrases we’re counting are called n-grams (where n is the length), so
this is an n-gram language model.

Note: the above example is considered a 3-gram model, not a 2-gram
model!

N-Gram Language Models

Shakespeare:

Jurafsky and Martin, Speech and Language Processing

N-Gram Language Models

Wall Street Journal:

Jurafsky and Martin, Speech and Language Processing

N-Gram Language Models

Problems with n-gram language models

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Ways to deal with data sparsity

Use a short context (but this means the model is less powerful)
Smooth the probabilities, e.g. by adding imaginary counts
Make predictions using an ensemble of n-gram models with different n

N-Gram Language Models

Problems with n-gram language models

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Ways to deal with data sparsity

Use a short context (but this means the model is less powerful)
Smooth the probabilities, e.g. by adding imaginary counts
Make predictions using an ensemble of n-gram models with different n

N-Gram Language Models

Problems with n-gram language models

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Ways to deal with data sparsity

Use a short context (but this means the model is less powerful)
Smooth the probabilities, e.g. by adding imaginary counts
Make predictions using an ensemble of n-gram models with different n

N-Gram Language Models

Problems with n-gram language models

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Ways to deal with data sparsity

Use a short context (but this means the model is less powerful)
Smooth the probabilities, e.g. by adding imaginary counts
Make predictions using an ensemble of n-gram models with different n

Distributed Representations

Conditional probability tables are a kind of localist representation: all the
information about a particular word is stored in one place, i.e. a column of the
table.

But different words are related, so we ought to be able to share information
between them. For instance, consider this matrix of word attributes:

academic politics plural person building
students 1 0 1 1 0
colleges 1 0 1 0 1
legislators 0 1 1 1 0
schoolhouse 1 0 0 0 1

And this matrix of how each attribute influences the next word:

bill is are papers built standing
academic − +
politics + −
plural − +
person +
building + +

Imagine these matrices are layers in an MLP. (One-hot representations of words,
softmax over next word.)

Here, the information about a given word is distributed throughout the
representation. We call this a distributed representation.

In general, when we train an MLP with backprop, the hidden units won’t have
intuitive meanings like in this cartoon. But this is a useful intuition pump for what
MLPs can represent.

Distributed Representations

We would like to be able to share information between related words.
E.g., suppose we’ve seen the sentence

The cat got squashed in the garden on Friday.

This should help us predict the words in the sentence

The dog got flattened in the yard on Monday.

An n-gram model can’t generalize this way, but a distributed
representation might let us do so.

Neural Language Model

Predicting the distribution of the next word given the previous K is
just a multiway classification problem.

Inputs: previous K words

Target: next word
Loss: cross-entropy. Recall that this is equivalent to maximum
likelihood:

− log p(s) = − log
T∏
t=1

p(wt |w1, . . . ,wt−1)

= −
T∑
t=1

log p(wt |w1, . . . ,wt−1)

= −
T∑
t=1

V∑
v=1

ttv log ytv ,

where tiv is the one-hot encoding for the ith word and yiv is the
predicted probability for the ith word being index v .

Neural Language Model

Here is a classic neural probabilistic language model, or just neural
language model:

Bengio�s neural net for predicting the next word

“softmax” units (one per possible next word)

index of word at t-2 index of word at t-1

learned distributed
encoding of word t-2

learned distributed
encoding of word t-1

units that learn to predict the output word from features of the input words

table look-up table look-up

skip-layer
connections

Neural Language Model

If we use a 1-of-K encoding for the words, the first layer can be
thought of as a linear layer with tied weights.

The weight matrix basically acts like a lookup table. Each column is
the representation of a word, also called an embedding, feature
vector, or encoding.

“Embedding” emphasizes that it’s a location in a high-dimensonal
space; words that are closer together are more semantically similar
“Feature vector” emphasizes that it’s a vector that can be used for
making predictions, just like other feature mappigns we’ve looked at
(e.g. polynomials)

Neural Language Model

We can measure the similarity or dissimilarity of two words using

the dot product r>1 r2
Euclidean distance ‖r1 − r2‖

If the vectors have unit norm, the two are equivalent:

‖r1 − r2‖2 = (r1 − r2)>(r1 − r2)

= r>1 r1 − 2r>1 r2 + r>2 r2

= 2− 2r>1 r2

In this case, the dot product is called cosine similarity.

Neural Language Model

This model is very compact: the number of parameters is linear in the
context size, compared with exponential for n-gram models.

Bengio�s neural net for predicting the next word

“softmax” units (one per possible next word)

index of word at t-2 index of word at t-1

learned distributed
encoding of word t-2

learned distributed
encoding of word t-1

units that learn to predict the output word from features of the input words

table look-up table look-up

skip-layer
connections

Neural Language Model

What do these word embeddings look like?

It’s hard to visualize an n-dimensional space, but there are algorithms
for mapping the embeddings to two dimensions.

The following 2-D embeddings are done with an algorithm called
tSNE which tries to make distnaces in the 2-D embedding match the
original 30-D distances as closely as possible.

Note: the visualizations are from a slightly different model.

Neural Language Model

Neural Language Model

Neural Language Model

Neural Language Model

Thinking about high-dimensional embeddings

Most vectors are nearly orthogonal (i.e. dot product is close to 0)
Most points are far away from each other
“In a 30-dimensional grocery store, anchovies can be next to fish and
next to pizza toppings.” – Geoff Hinton

The 2-D embeddings might be fairly misleading, since they can’t
preserve the distance relationships from a higher-dimensional
embedding. (I.e., unrelated words might be close together in 2-D, but
far apart in 30-D.)

Neural language model

When we train a neural language model, is that supervised or unsupervised
learning? Does it have elements of both?

GloVe

Fitting language models is really hard:

It’s really important to make good predictions about relative
probabilities of rare words.
Computing the predictive distribution requires a large softmax.

Maybe this is overkill if all you want is word representations.

Global Vector (GloVe) embeddings are a simpler and faster approach
based on a matrix factorization similar to principal component
analysis (PCA).

First fit the distributed word representations using GloVe, then plug
them into a neural net that does some other task (e.g. language
modeling, translation).

GloVe

Distributional hypothesis: words with similar distributions have similar
meanings (“judge a word by the company it keeps”)

Consider a co-occurrence matrix X, which counts the number of
times two words appear nearby (say, less than 5 positions apart)

This is a V × V matrix, where V is the vocabulary size (very large)

Intuition pump: suppose we fit a rank-K approximation X ≈ RR̃>,
where R and R̃ are V × K matrices.

Each row ri of R is the K -dimensional representation of a word
Each entry is approximated as xij ≈ r>i r̃j
Hence, more similar words are more likely to co-occur
Minimizing the squared Frobenius norm
‖X− RR̃>‖2F =

∑
i,j(xij − r>i r̃j)

2 is basically PCA.

GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{(xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter

Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{(xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{(xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{(xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 5: Distributed Representations 27 / 29

GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{(xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{(xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

Word Analogies

Here’s a linear projection of word representations for cities and capitals into
2 dimensions.

The mapping city → capital corresponds roughly to a single direction in the
vector space:

Note: this figure actually comes from skip-grams, a predecessor to GloVe.

Word Analogies

In other words,
vector(Paris)− vector(France) ≈ vector(London)− vector(England)

This means we can analogies by doing arithmetic on word vectors:

e.g. “Paris is to France as London is to ”
Find the word whose vector is closest to
vector(France)− vector(Paris) + vector(London)

Example analogies:

