CS490 Lecture 4: Learning a Classifier

Eren Gultepe - SIUE

Adapted from Roger Grosse

Overview

@ Last time: binary classification, perceptron algorithm
@ Limitations of the perceptron

e no guarantees if data aren’t linearly separable

e how to generalize to multiple classes?

o linear model — no obvious generalization to multilayer neural networks
@ This lecture: apply the strategy we used for linear regression

o define a model and a cost function
e optimize it using gradient descent

Overview

Design choices so far
@ Task: regression, binary classification, multiway classification
e Model/Architecture: linear, log-linear
@ Loss function: squared error, 0-1 loss, cross-entropy, hinge loss

o Optimization algorithm: direct solution, gradient descent,
perceptron

Overview
@ Recall: binary linear classifiers. Targets t € {0,1}

z=w'x+b

|1 ifz>0
Y710 ifz<o0

@ Goal from last lecture: classify all training examples correctly
o But what if we can't, or don't want to?

@ Seemingly obvious loss function: 0-1 loss

0 fy=t
Eoﬂ%ﬂz{l Hi#t
= 1yze.

|
Attempt 1: 0-1 loss

@ As always, the cost £ is the average loss over training examples; for
0-1 loss, this is the error rate:

N

1
£=n 3 Lo
i=1

(I (N - N

-
Attempt 1: 0-1 loss

@ Problem: how to optimize?

@ Chain rule:

OLo—1 _ OLy—1 Oz
ow, 0z 0w,

-
Attempt 1: 0-1 loss

@ Problem: how to optimize? &

@ Chain rule: S

OLo—1 _ OLy—1 Oz
ow, 0z 0w,

@ But 0Ly_1/0z is zero everywhere it's defined!
o 0Ly_1/0wj= 0 means that changing the weights by a very small
amount probably has no effect on the loss.

@ The gradient descent update is a no-op. Almost any point has 0
gradient!

-
Attempt 2: Linear Regression

@ Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

@ We already know how to fit a linear regression model. Can we use
this instead?

y = wix+b
1
Lsn(y.t) = 5(y — 2

@ Doesn't matter that the targets are actually binary.

@ Threshold predictions at y = 1/2.

-
Attempt 2: Linear Regression

The problem:

large
residual

\

@ The loss function hates when you make correct predictions with high
confidence!

o If t =1, it's more unhappy about y = 10 than y = 0.

-
Attempt 3: Logistic Activation Function

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

@ The logistic function is a kind of sigmoidal, or 0

S-shaped, function: o
1 .
o(z) = 1+e2 0

@ A linear model with a logistic nonlinearity is known as log-linear:

z=w'x+b

y =0o(z)
1
Lse(y. 1) = 5y —)2
@ Used in this way, o is called an activation function, and z is called the

logit.
]

-
Attempt 3: Logistic Activation Function

The problem:
(plot of Lgg as a function of z)

0.5

0.4
0.3

oc _oc oz
ow; 0z ow;

0.2

loss

0.1

0.0
-0.1

05— =6 & 2 o0 2
z

oL

Wi W — o —

Ow;

-
Attempt 3: Logistic Activation Function

The problem:
(plot of Lgg as a function of z)

05—
0.4
0.3 8£ 6£ 82
§ o2 ow; 0z Ow;
0.1
0.0 . - 8[,
P\ Wi W, —
-0.1 \ J J 8Wj
05— =6 & 2 o0 2

@ In gradient descent, a small gradient (in magnitude) implies a small
step.

@ If the prediction is really wrong, shouldn't you take a large step?

Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability

that t = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

@ Cross-entropy loss captures this intuition:

| —logy ift=1
‘CCE(y’t)_{ “log(1—y) ift=0

= —tlogy — (1 —t)log(1l—y)

5

N w N

cross-entropy loss

-

==

0.2

0.4

0.6

0.8

1.0

Logistic Regression

Logistic Regression:

— logistic + CE

z=w'x+b
y=o0(z)
1
14+ e 2
Lcg = —tlogy — (1 —t)log(l —y)

[[gradient derivation in the notes]]

Logistic Regression

@ Problem: what if t =1 but you're really confident it's a negative
example (z < 0)?

o If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

Log = —tlogy — (1 —t)log(1l—y) = computes log0

Logistic Regression

@ Problem: what if t =1 but you're really confident it's a negative
example (z < 0)?

o If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

Log = —tlogy — (1 —t)log(1l—y) = computes log0

@ Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

Lice(z,t) = Log(o(z),t) = tlog(l+ e %) + (1 — t) log(1 + &%)

@ Numerically stable computation:
E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Logistic Regression
Comparison of loss functions:

3.0

— zero-one
—— least squares
— logistic + LS
— logistic + CE

2.0
815
1.0
0.5
005~ 1 o 1 2 3
z

Gradient Descent for Logistic Regression

e How do we minimize the cost J for logistic regression? No direct
solution.

» Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have
an explicit solution.
e However, the logistic loss is a convex function in w, so let’s
consider the gradient descent method from last lecture.
» Recall: we initialize the weights to something reasonable and
repeatedly adjust them in the direction of steepest descent.
» A standard initialization is w = 0. (why?)

Gradient of Logistic Loss

Back to logistic regression:
Log(y,t) = — tlog(y) — (1 —1)log(1 —y)
y=1/(1+e*) and z=w'x

Therefore
OLcE aECE@C{)Z (t 1-—t

= =2) oyl =)
ow; Oy 0z Ow y+1—y) Yy =)

=(y —t)z;
(verify this)

Gradient descent (coordinatewise) update to find the weights of logistic
regression:

N
J
N
o 7) g
—w, Nz(yu OO
=1

Logistic Regression

Comparison of gradient descent updates:

@ Linear regression:
N
W W — Zé(y(f) _ t(i))x(i)
@ Logistic regression:

N
a i i i

i=1

Logistic Regression

Comparison of gradient descent updates:

@ Linear regression:
N
W W — Zé(y(f) _ t(i))x(i)
@ Logistic regression:

N
a i i i

i=1

@ Not a coincidence! These are both examples of matching loss
functions, but that's beyond the scope of this course.

-
Hinge Loss

@ Another loss function you might encounter is hinge loss. Here, we take

t € {—1,1} rather than {0, 1}.

Lu(y,t) = max(0,1 — ty)

@ This is an upper bound on 0-1 loss (a
useful property for a surrogate loss
function).

@ A linear model with hinge loss is called
a support vector machine. You already
know enough to derive the gradient
descent update rules!

@ Very different motivations from logistic
regression, but similar behavior in
practice.

— zero-one
— logistic + CE
—— hinge

Logistic Regression

Comparison of loss functions:

3.0 —
—— least squares
2.5 — logistic + LS
— logistic + CE
—— hinge
2.0 1
%))
5 15
1.0
0.5 B\ N S
0.0 N
-3 -2 -1 0 1 2 3

Multiclass Classification

@ What about classification tasks with more than two categories?

buzen 1233

36294977659

427N 712839

P8378 49497

Multiclass Classification

@ Targets form a discrete set {1,..., K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0)

~
entry k is 1

Multiclass Classification

@ Now there are D input dimensions and K output dimensions, so we
need K x D weights, which we arrange as a weight matrix W.

@ Also, we have a K-dimensional vector b of biases.

@ Linear predictions:

ZK = Z Wi Xj + by

@ Vectorized:

Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:
ek

Zk/ e

yk = softmax(zy, ..., zx)k =

@ The inputs zx are called the logits.
@ Properties:
o Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
o If one of the z;'s is much larger than the others, softmax(z) is
approximately the argmax. (So really it's more like “soft-argmax”.)
o Exercise: how does the case of K = 2 relate to the logistic function?
o Note: sometimes o(z) is used to denote the softmax function; in this

class, it will denote the logistic function applied elementwise.

Multiclass Classification

o If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(yt) == tklogy
k=1

= —t' (logy),

where the log is applied elementwise.

@ Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

Multiclass Classification

o Multiclass logistic regression:

z=Wx-+b

y = softmax(z)

Lop = —t' (logy)

@ Tutorial: deriving the gradient descent updates

OLce

—t
0z y

Convex Functions

@ Recall: a set S is convex if for any xg,x; € S,
(1=XNxo+Ax; €S for0< AL
@ A function f is convex if for any xq,x; in the domain of f,
(1= A)xo+ Ax1) < (1 — A)f(xo) + Af(x1)

o Equivalently, the set of
(T =X)f(zo0)

points lying above the afy TN —
graph of f is convex. ' '
@ Intuitively: the function
is bowl-shaped. a-ne | LN
+ Azq) . . .

Convex Functions

@ We just saw that the
least-squares loss
function %(y —t)?is
convex as a function of y

@ For a linear model,
z=w'x+ bis a linear
function of w and b. If
the loss function is
convex as a function of
z, then it is convex as a
function of w and b.

(1 — N)L(wo)
+ AL(wy)

L((1 = XN)wy I
+ Awy)

Convex Functions

Which loss functions are convex?

3.0 _
—— least squares
2.5 —— logistic + LS
—— logistic + CE
—— hinge
2.0 1
%))
5 15
1.0
0.5 e\ N S
0.0 N
-3 -2 -1 0 1 2 3

Convex Functions

Why we care about convexity
@ All critical points are minima

o Gradient descent finds the optimal solution (more on this in a later
lecture)

-
Gradient Checking

@ We've derived a lot of gradients so far. How do we know if they're
correct?
@ Recall the definition of the partial derivative:

f(Xl,...,X,'th,...,XN)*f(Xl,...,X,',...,XN)

0 .
a—xff(xh Ce XN) = hlﬁqo

@ Check your derivatives numerically by plugging in a small value of h,
e.g. 10710 This is known as finite differences.

-
Gradient Checking

@ Even better: the two-sided definition

f(Xl,...,X;—I—h,...,XN)—f(Xl,...

By On o) = limy 2h

— exact
— one-sided
— two-sided

-
Gradient Checking

Run gradient checks on small, randomly chosen inputs

@ Use double precision floats (not the default for most deep learning
frameworks!)

@ Compute the relative error:

|a — bl
|al + |b]

The relative error should be very small, e.g. 107°

e 0731

-
Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.
o But:

e They might work much better if the derivatives are correct.
o Wrong derivatives might lead you on a wild goose chase.

o If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.

