
CS490 Lecture 3: Linear Classifiers

Adapted from Roger Grosse

Eren Gultepe - SIUE



Overview

Classification: predicting a discrete-valued target

In this lecture, we focus on binary classification: predicting a
binary-valued target

Examples

predict whether a patient has a disease, given the presence or absence
of various symptoms
classify e-mails as spam or non-spam
predict whether a financial transaction is fraudulent



Overview

Design choices so far

Task: regression, classification

Model/Architecture: linear

Loss function: squared error

Optimization algorithm: direct solution, gradient descent,
perceptron



Overview

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t ∈ {0, 1}
Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

linear: model is a linear function of x, followed by a threshold:

z = wTx + b

y =

{
1 if z ≥ r
0 if z < r



Some simplifications

Eliminating the threshold

We can assume WLOG that the threshold r = 0:

wTx + b ≥ r ⇐⇒ wTx + b − r︸ ︷︷ ︸
,b′

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The weight
w0 is equivalent to a bias.

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0



Some simplifications

Eliminating the threshold

We can assume WLOG that the threshold r = 0:

wTx + b ≥ r ⇐⇒ wTx + b − r︸ ︷︷ ︸
,b′

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The weight
w0 is equivalent to a bias.

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0



Some simplifications

Eliminating the threshold

We can assume WLOG that the threshold r = 0:

wTx + b ≥ r ⇐⇒ wTx + b − r︸ ︷︷ ︸
,b′

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The weight
w0 is equivalent to a bias.

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0



As a neuron

This is basically a special case of the neuron-like processing unit from
Lecture 1.

output bias

i'th input

i'th weighty

x1 x2 x3

output

weights

inputs

w1 w2 w3 y = g

�
b +

�

i

xiwi

�

nonlinearity

Today’s question: what can we do with a single unit?



Examples

NOT

x0 x1 t

1 0 1
1 1 0

b > 0

b + w < 0

b = 1, w = −2



Examples

NOT

x0 x1 t

1 0 1
1 1 0

b > 0

b + w < 0

b = 1, w = −2

Roger Grosse CSC321 Lecture 3: Linear Classifiers – or – What good is a single neuron? 7 / 24



Examples

NOT

x0 x1 t

1 0 1
1 1 0

b > 0

b + w < 0

b = 1, w = −2



Examples

NOT

x0 x1 t

1 0 1
1 1 0

b > 0

b + w < 0

b = 1, w = −2



Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1



Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1



Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1



Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1



Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1



Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1



The Geometric Picture

Recall from linear regression:



The Geometric Picture

Input Space, or Data Space for NOT example

x0 x1 t

1 0 1
1 1 0

Training examples are points

Weights (hypotheses) w can be represented by half-spaces
H+ = {x : w>x ≥ 0}, H− = {x : w>x < 0}

I The boundaries of these half-spaces pass through the origin (why?)

The boundary is the decision boundary: {x : w>x = 0}
I In 2-D, it’s a line, but in high dimensions it is a hyperplane

If the training examples can be perfectly separated by a linear
decision rule, we say data is linearly separable.



The Geometric Picture

Weight Space

w0 ≥ 0

w0 + w1 < 0

Weights (hypotheses) w are points

Each training example x specifies a half-space w must lie in to be
correctly classified: w>x ≥ 0 if t = 1.

For NOT example:
I x0 = 1, x1 = 0, t = 1 =⇒ (w0, w1) ∈ {w : w0 ≥ 0}
I x0 = 1, x1 = 1, t = 0 =⇒ (w0, w1) ∈ {w : w0 + w1 < 0}

The region satisfying all the constraints is the feasible region; if
this region is nonempty, the problem is feasible, otw it is infeasible.



The Geometric Picture

The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look at
a 2-D slice:

The visualizations are similar, except that the decision boundaries and the
constraints need not pass through the origin.



The Geometric Picture

Visualizations of the AND example

Data Space

Slice for x0 = 1

Weight Space

Slice for w0 = −1

What happened to the fourth constraint?



The Geometric Picture

Some datasets are not linearly separable, e.g. XOR



The Perceptron Learning Rule

Let’s mention a classic classification algorithm from the 1950s: the
perceptron

- Frank Rosenblatt, with the image sensor (left) of the Mark I Perceptron40



The Perceptron Learning Rule

The idea:

If t = 1 and z = w>x > 0

then y = 1, so no need to change anything.

If t = 1 and z < 0

then y = 0, so we want to make z larger.
Update:

w′ ← w + x

Justification:

w′Tx = (w + x)Tx

= wTx + xTx

= wTx + ‖x‖2.



The Perceptron Learning Rule

The idea:

If t = 1 and z = w>x > 0

then y = 1, so no need to change anything.

If t = 1 and z < 0

then y = 0, so we want to make z larger.

Update:
w′ ← w + x

Justification:

w′Tx = (w + x)Tx

= wTx + xTx

= wTx + ‖x‖2.



The Perceptron Learning Rule

The idea:

If t = 1 and z = w>x > 0

then y = 1, so no need to change anything.

If t = 1 and z < 0

then y = 0, so we want to make z larger.
Update:

w′ ← w + x

Justification:

w′Tx = (w + x)Tx

= wTx + xTx

= wTx + ‖x‖2.



The Perceptron Learning Rule

The idea:

If t = 1 and z = w>x > 0

then y = 1, so no need to change anything.

If t = 1 and z < 0

then y = 0, so we want to make z larger.
Update:

w′ ← w + x

Justification:

w′Tx = (w + x)Tx

= wTx + xTx

= wTx + ‖x‖2.



The Perceptron Learning Rule

For convenience, let targets be {−1, 1} instead of our usual {0, 1}.

Perceptron Learning Rule:

Repeat:

For each training case (x(i), t(i)),

z (i) ← wTx(i)

If z (i)t(i) ≤ 0,

w← w + t(i)x(i)

Stop if the weights were not updated in this epoch.



The Perceptron Learning Rule

Compare:

SGD for linear regression

w← w − α(y − t) x

perceptron

z ← wTx

If zt ≤ 0,

w← w + tx



The Perceptron Learning Rule

Under certain conditions, if the problem is feasible, the perceptron rule
is guaranteed to find a feasible solution after a finite number of steps.

If the problem is infeasible, all bets are off.

Stay tuned. . .

The perceptron algorithm caused lots of hype in the 1950s, then
people got disillusioned and gave up on neural nets.

People were discouraged about fundamental limitations of linear
classifiers.



Limits of Linear Classification

Visually, it’s obvious that XOR is not linearly separable. But how to
show this?



Limits of Linear Classification

Convex Sets

A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

x1, x2 ∈ S =⇒ λx1 + (1− λ)x2 ∈ S for 0 ≤ λ ≤ 1.

A simple inductive argument shows that for x1, . . . , xN ∈ S, weighted
averages, or convex combinations, lie within the set:

λ1x1 + · · ·+ λNxN ∈ S for λi > 0, λ1 + · · ·λN = 1.



Limits of Linear Classification

Showing that XOR is not linearly separable

Half-spaces are obviously convex.

Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

Similarly, the red line segment must line within the negative half-space.

But the intersection can’t lie in both half-spaces. Contradiction!



Limits of Linear Classification

A more troubling example

Discriminating simple patterns 
under translation with wrap-around

• Suppose we just use pixels as 
the features.

• Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?
– Not if the patterns can

translate with wrap-around!

pattern A 

pattern A 

pattern A 

pattern B 

pattern B 

pattern B 

Discriminating simple patterns 
under translation with wrap-around

• Suppose we just use pixels as 
the features.

• Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?
– Not if the patterns can

translate with wrap-around!

pattern A

pattern A

pattern A

pattern B 

pattern B 

pattern B 

These images represent 16-dimensional vectors. White = 0, black = 1.

Want to distinguish patterns A and B in all possible translations (with
wrap-around)

Translation invariance is commonly desired in vision!

Suppose there’s a feasible solution. The average of all translations of A is the
vector (0.25, 0.25, . . . , 0.25). Therefore, this point must be classified as A.

Similarly, the average of all translations of B is also (0.25, 0.25, . . . , 0.25).
Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton



Limits of Linear Classification

A more troubling example

Discriminating simple patterns 
under translation with wrap-around

• Suppose we just use pixels as 
the features.

• Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?
– Not if the patterns can

translate with wrap-around!

pattern A 

pattern A 

pattern A 

pattern B 

pattern B 

pattern B 

Discriminating simple patterns 
under translation with wrap-around

• Suppose we just use pixels as 
the features.

• Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?
– Not if the patterns can

translate with wrap-around!

pattern A

pattern A

pattern A

pattern B 

pattern B 

pattern B 

These images represent 16-dimensional vectors. White = 0, black = 1.

Want to distinguish patterns A and B in all possible translations (with
wrap-around)

Translation invariance is commonly desired in vision!

Suppose there’s a feasible solution. The average of all translations of A is the
vector (0.25, 0.25, . . . , 0.25). Therefore, this point must be classified as A.

Similarly, the average of all translations of B is also (0.25, 0.25, . . . , 0.25).
Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton



Limits of Linear Classification

Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

φ(x) =




x1

x2

x1x2




x1 x2 φ1(x) φ2(x) φ3(x) t

0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable. (Try it!)

Not a general solution: it can be hard to pick good basis functions.
Instead, we’ll use neural nets to learn nonlinear hypotheses directly.




