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Quiz: Which face image is fake? 

A B C



Autoencoders 

An autoencoder is a feed-forward neural net whose job it is to take an 

input x and predict x. 

To make this non-trivial, we need to add a bottleneck layer whose 

dimension is much smaller than the input. 
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Autoencoders 

Why autoencoders? 

a Map high-dimensional data to two dimensions for visualization 

a Compression (i.e. reducing the file size) 

• Note: this requires a VAE, not just an ordinary autoencoder.

a Learn abstract features in an unsupervised way so you can apply them 
to a supervised task 

• Unlabled data can be much more plentiful than labeled data

a Learn a semantically meaningful representation where you can, e.g., 
interpolate between different images. 



Principal Component Analysis ( optional) 

a The simplest kind of autoencoder has one 
hidden layer, linear activations, and squared 
error loss. 

.C(x, x) = llx - xll 2

a This network computes x = UVx, which 1s a 
linear function. 

a If K > D, we can choose U and V such that 
UV is the identity. This isn't very interesting. 

a But suppose K < D: 
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• V maps x to a K-dimensional space, so it's doing dimensionality

reduction.

• The output must lie in a K-dimensional subspace, namely the column

space of U.



Principal Component Analysis ( optional) 

Review from CSC311: linear 
autoencoders with squared error 
loss are equivalent to Principal 
Component Analysis (PCA). 

'I Two equivalent formulations: 

a Find the subspace that 

minimizes the reconstruction 

error. 

a Find the subspace that 

maximizes the projected 

variance. 

The optimal subspace is 
spanned by the dominant 
eigenvectors of the empirical 
covariance matrix. 

"Eigenfaces" 



Deep Autoencoders 

a Deep nonlinear autoencoders learn to project the data, not onto a 

subspace, but onto a nonlinear manifold 

� This manifold is the image of the decoder. 

a This is a kind of nonlinear dimensionality reduction. 
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Deep Autoencoders 

a Nonlinear autoencoders can learn more powerful codes for a given 

dimensionality, compared with linear autoencoders (PCA) 
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Deep Autoencoders 

a Some limitations of autoencoders 

• They're not generative models, so they don't define a distribution

• How to choose the latent dimension?

n 

•

• 



Variational Auto-encoder (VAE)

Encoder learns the distribution of latent 
space given the observations.

Decoder learns the generative process 
given the sampled latent vectors.  

Sampling process in the middle.



Variational Auto-encoder (VAE)

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



Source: https://iagtm.pressbooks.com/chapter/story-platos-allegory-of-the-cave/

Observational Model



Observation Model 

Consider training a generator network with maximum likelihood. 

p(x) = j p(z)p(x I z) dz

One problem: if z is low-dimensional and the decoder is deterministic, 
then p(x) = 0 almost everywhere! 

e The model only generates samples over a low-dimensional sub-manifold 

of X. 

a Solution: define a noisy observation 

model, e.g. 

p(x I z) = N(x; Ge(z) 771)

where Ge is the function computed by 

the decoder with parameters 0.



Observation Model 

� At least p(x) = J p(z)p(x I z) dz is well-defined, but how can we 
compute it? 
Integration, according to XKCD: 
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Observation Model 

a At least p(x) = J p(z)p(x I z) dz is well-defined, but how can we 
compute it? 

a The decoder function Go(z) is very complicated, so there's no hope of 

finding a closed form. 

a Instead, we will try to maximize a lower bound on log p(x). 

a The math is essentially the same as in the EM algorithm from CSC411. 



Variational Inference 

a We obtain the lower bound using 
Jensen's Inequality: for a convex 
function h of a random variable X, 

IE[h(X)] > h(IE[X]) 

Therefore, if h is concave (i.e. -h is 
convex), 

IE[h(X)] < h(IE[X]) 

a The function log z is concave. 
Therefore, 

IE[log X] < log IE[X] 
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Variational Inference 

a The first term we'll look at is 1Eq [log p(xlz)] 
a Since we assumed a Gaussian observation model, 

log p(xlz) = logN(x; Ge(z), 771) 

= 
log [ 

(21r
:

)
Df2 

exp ( - 2
� llx - Go(z) 112 )]

1 2

= --llx - Ge(z)II + const 
277 

a So this term is the expected squared error in reconstructing x from z. 
We call it the reconstruction term. 



Variational Inference 

The second term is 1Eq [10g :���]. 

This is just -DKL(q(z)llp(z)), where DKL is the Kullback-Leibler 
(KL) divergence 

6. [ q( z) l DKL(q(z)llp(z)) = 1Eq log p(z) 

e KL divergence is a widely used measure of distance between probability 

distributions, though it doesn't satisfy the axioms to be a distance 

metric. 

e More details in tutorial. 

Typically, p(z) = N(O I). Hence, the KL term encourages q to be 
close to N(O, 1). 



Variational Inference 

a Hence, we're trying to maximize the variational lower bound, or 
variational free energy: 

logp(x) > F(0 q) = Eq [logp(xlz)] - DKL(qllp). 

The term "variational" is a historical accident: "variational inference" 
used to be done using variational calculus, but this isn't how we train 
VAEs. 

a We'd like to choose q to make the bound as tight as possible. 
a It's possible to show that the gap is given by: 

logp(x) - F(0, q) = DKL(q(z)l lp(zlx)). 

Therefore, we'd like q to be as close as possible to the posterior 
distribution p(zlx). 



a Let's think about the role of each of the two terms. 

a The reconstruction term 

1 
lEq [log p(xlz)] = --

2 
lEq [llx - Go(z)ll 2] + const 

2cr 

is minimized when q is a point mass on 

z* = arg min llx - Go(z)ll 2
. 

a But a point mass would have infinite KL divergence. (Exercise: check 
this.) So the KL term forces q to be more spread out. 
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Amortization 

" This suggests one strategy for learning the decoder. For each training 
example, 

Fit q to approximate the posterior for the current x by doing many 

steps of gradient ascent on F. 

G Update the decoder parameters 0 with gradient ascent on F.

" Problem: this requires an expensive iterative procedure for every 

training example, so it will take a long time to process the whole 

training set. 



Amortization 

Idea: amortize the cost of inference by 
learning an inference network which 
predicts (µ, l:) as a function of x. 

a The outputs of the inference net are µ
and log a. (The log representation 
ensures a> 0.) 

a If a � 0, then this network essentially 
computes z deterministically, by way of 
µ. 

e But the KL term encourages a- > 0, 
so in general z will be noisy. 

a The notation q(zlx) emphasizes that q 
depends on x, even though it's not 
actually a conditional distribution. 
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Amortization 

Combining this with the decoder 
network, we see the structure closely 
resembles an ordinary autoencoder. The 
inference net is like an encoder. 

" Hence, this architecture is known as a 

variational autoencoder (VAE). 

a The parameters of both the encoder 
and decoder networks are updated using 
a single pass of ordinary backprop. 

e The reconstruction term corresponds 
to squared error llx - xll2 , like in an 
ordinary VAE. 

e The KL term regularizes the 
representation by encouraging z to be 
more stochastic. 
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VAE - Summary



VAEs vs. Other Generative Models 

a In short, a VAE is like an autoencoder, except that it's also a 
generative model ( defines a distribution p(x) ). 

Unlike autoregressive models, generation only requires one forward 
pass. 

a Unlike reversible models, we can fit a low-dimensional latent 
representation. We'll see we can do interesting things with this ... 



Latent Space Interpolations 

You can often get interesting results by interpolating between two 

vectors in the latent space: 
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Ha and Eck, "A neural representation of sketch drawings" 



https://arxiv.org/pdf/1610.00291.pdf



Latent Space Interpolations 

Latent space interpolation of music: 

https://magenta.tensorflow.org/music-vae 



Trade-offs of Generative Approaches 

a In summary: 

Log-likelihood Sample Representation 

Autoregressive Tractable Good Poor 
GANs Intractable Good Good 

Reversible Tractable Poor Poor 
VAEs (optional) Tractable* Poor Good 

a There is no silver bullet in generative modeling. 

Computation 

O(#pixels) 
O(#layers) 
O(#layers) 
O(#layers) 




