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Quiz: Which face image is fake?




Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.
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Autoencoders

Why autoencoders?

@ Map high-dimensional data to two dimensions for visualization
@ Compression (i.e. reducing the file size)
e Note: this requires a VAE, not just an ordinary autoencoder.

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task

o Unlabled data can be much more plentiful than labeled data

@ Learn a semantically meaningful representation where you can, e.g.,
interpolate between different images.




Principal Component Analysis (optional)

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared S

X D units
error loss. i
U decoder
S\ <112
E(X, x) - ”x o x” K units
A
@ This network computes x = UVx, which is a Vv encoder
linear function. x .
o If K> D, we can choose U and V such that

UV is the identity. This isn't very interesting.
@ But suppose K < D:

e V maps x to a K-dimensional space, so it's doing dimensionality
reduction.

e The output must lie in a K-dimensional subspace, namely the column
space of U.



Principal Component Analysis (optional)

@ Review from CSC311: linear

autoencoders with squared error r."-nam
loss are equivalent to Principal o
Component Analysis (PCA). aﬁ-!'-zy
@ Two equivalent formulations: Hﬂ.n“’lp«
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Deep Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

@ This manifold is the image of the decoder.

@ This is a kind of nonlinear dimensionality reduction.
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Deep Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)
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Deep Autoencoders

@ Some limitations of autoencoders

e They're not generative models, so they don’t define a distribution
e How to choose the latent dimension?




Variational Auto-encoder (VAE)

zi~q(zi|xi, )

Decoder learns the generative process
given the sampled latent vectors.

Sampling process in the middle.

Encoder learns the distribution of latent
space given the observations.



Variational Auto-encoder (VAE)

neural network sampling 3 neural network
encoder decoder

N(p, o) z~N(p o)

loss = ||x-x'\||2 + KL[ N(p o ), N0, )] = || x-d(2)|]* + KL[N(p o ), N(O, )]




Observational Model

Source: https://iagtm.pressbooks.com/chapter/story-platos-allegory-of-the-cave/
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Observation Model

@ Consider training a generator network with maximum likelihood.

p(x) = / p(2)p(x|2) dz

@ One problem: if z is low-dimensional and the decoder is deterministic,
then p(x) = 0 almost everywhere!

e The model only generates samples over a low-dimensional sub-manifold
of X.

@ Solution: define a noisy observation
model, e.g.

p(x|z) = N(x; Gg(z). ),

where Gg is the function computed by
the decoder with parameters 6.



.
Observation Model

o At least p(x) = | p(z)p(x|z) dz is well-defined, but how can we
compute it?

@ Integration, according to XKCD:

DIFFERENTIATION INTEGRATION




.
Observation Model

o At least p(x) = | p(z)p(x|z)dz is well-defined, but how can we
compute |t7

o The decoder function Gg(z) is very complicated, so there's no hope of
finding a closed form.

@ Instead, we will try to maximize a lower bound on log p(x).
o The math is essentially the same as in the EM algorithm from CSC411.




Variational Inference

@ We obtain the lower bound using
Jensen’s Inequality: for a convex
function h of a random variable X,

E[h(X)] > h(E[X])

Therefore, if h is concave (i.e. —h is
convex),

E[h(X)] < h(E[X])

@ The function log z is concave.
Therefore,

E[log X] < log E[X]




Variational Inference

@ Suppose we have some distribution g(z). (We'll see later where this
comes from.)

@ We use Jensen's Inequality to obtain the lower bound.

log p(x) = log /p(Z) p(x|z) dz
~ log / a(2) 22 plxia)

q(z) log [q i) p x\z)] dz (Jensen’s Inequality)
[log 28] + o log ptxi)

e We'll look at these two terms in turn.
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Variational Inference

@ The first term we'll look at is Eq [log p(x|z)]

@ Since we assumed a Gaussian observation model,

log p(x|z) = log N(x; Gg(z), nl)

—tog | s 0 (50 k- Go@I? )|

1
= —2—n||x — Gg(2)|]? + const

@ So this term is the expected squared error in reconstructing x from z.
We call it the reconstruction term.




Variational Inference

@ The second term is £, [Io q—g%J

@ This is just —Dkr,(q(z)|p(z)), where Dk, is the Kullback-Leibler
(KL) divergence

Dkr(q(2)llp(2)) 2 Eq ['Og %1

e KL divergence is a widely used measure of distance between probability
distributions, though it doesn't satisfy the axioms to be a distance
metric.

o More details in tutorial.

e Typically, p(z) = N(0,1). Hence, the KL term encourages g to be
close to N(0,1).




Variational Inference

@ Hence, we're trying to maximize the variational lower bound, or
variational free energy:

log p(x) > F (6, q) = Eq [log p(x|z)] — DxL(ql|p).

@ The term “variational” is a historical accident: “variational inference”
used to be done using variational calculus, but this isn't how we train
VAEs.

@ We'd like to choose g to make the bound as tight as possible.
@ It's possible to show that the gap is given by:

log p(x) — F (6, q) = Dxr(q(2)llp(z[x)).

Therefore, we'd like g to be as close as possible to the posterior
distribution p(z|x).



@ Let's think about the role of each of the two terms.

@ The reconstruction term

1
Eqflog p(x[2)] = —5—5Eqlllx — Go(2)]|%] + const

is minimized when g is a point mass on

z, = arg min ||x — Gg(2)||°.
z

@ But a point mass would have infinite KL divergence. (Exercise: check
this.) So the KL term forces g to be more spread out.




Reparameterization Trick

e To fit g, let’s assign it a parametric form, in particular a Gaussian
distribution: q(z) = N(z; u, X), where g = (1, ..., k) and
¥ = diag(c?,...,0%).

@ In general, it's hard to differentiate through an expectation. But for
Gaussian g, we can apply the reparameterization trick:

Zj = Wi + Oj€j,

where ¢; ~ N(0, 1).
@ Hence,
Wi =z gi = Zj€j.

@ This is exactly analogous to how we derived the backprop rules for
dropout
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Reparameterization Trick

Original form

|_ _________________ 1
| |
| f i
I |
| |
| ~q@ex)
| |
: N X :
| |
I |

|

: Deterministic node

. : Random node
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Reparameterization Trick

Original form Reparameterised form
S o ]
| f | . Backprop f |
: NN :
: ~q@ex) 2/0s 2, =9®xe) |
| Y4 |
| & & 1 9f/0g B X ~ple) |
: .| =0L/dg :

! | |

[Kingma, 2013]

[Bengio, 2013]

[Kingma and Welling 2014]
[Rezende et al 2014]
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Amortization

@ This suggests one strategy for learning the decoder. For each training
example,
@ Fit g to approximate the posterior for the current x by doing many

steps of gradient ascent on F.
@ Update the decoder parameters @ with gradient ascent on F.

@ Problem: this requires an expensive iterative procedure for every
training example, so it will take a long time to process the whole
training set.




Amortization

@ ldea: amortize the cost of inference by
learning an inference network which
predicts (p, X) as a function of x. z

@ The outputs of the inference net are p f//
m

and logo. (The log representation
ensures o > 0.)

e If o = 0, then this network essentially
computes z deterministically, by way of
L.

e But the KL term encourages o > 0,
so in general z will be noisy.

logo a(zlx)
/

@ The notation g(z|x) emphasizes that g X
depends on x, even though it's not '
actually a conditional distribution.



Amortization

@ Combining this with the decoder
network, we see the structure closely
resembles an ordinary autoencoder. The
inference net is like an encoder.

decoder

@ Hence, this architecture is known as a
variational autoencoder (VAE).

=

@ The parameters of both the encoder e/**
and decoder networks are updated using ‘ E
a single pass of ordinary backprop. o
e The reconstruction term corresponds \ /
to squared error ||x — %, like in an LJ
ordinary VAE. .
o The KL term regularizes the Cox

representation by encouraging z to be
more stochastic.

encoder




I
VAE - Summary

Reparam. trick
for differentiability

©

Computed
@ analytically
My Oy = M(X), Z(X)

e~ N(0,1)
zZ=€0, + U,
x, = po(x | 2)
recon. loss = MSE(x, x,)
var. loss = —KL[N (g, 0,)||N(0, I)]

L = recon. loss + var. loss
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Push x through encoder

Sample noise

Reparameterize

Push z through decoder

Compute reconstruction loss

Compute variational loss

Combine losses



R
VAEs vs. Other Generative Models

@ In short, a VAE is like an autoencoder, except that it's also a
generative model (defines a distribution p(x)).

@ Unlike autoregressive models, generation only requires one forward
pass.

@ Unlike reversible models, we can fit a low-dimensional latent
representation. We'll see we can do interesting things with this...




Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

BREBELEZY
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Ha and Eck, “A neur of sketch drawings”




Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

-0 - ————-— e — — — — =]

add
smiling
vector
. ' . subtract
f. - smiling
{-i»‘. . — - - vector
add
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vector
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sunglass
vector

subtract
sunglass
vector

https://arxiv.org/pdf/1610.00291.pdf
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Latent Space Interpolations

@ Latent space interpolation of music:
https://magenta.tensorflow.org/music-vae




Trade-offs of Generative Approaches

@ In summary:

Log-likelihood | Sample | Representation | Computation
Autoregressive Tractable Good Poor O(#pixels)
GANs Intractable Good Good O(#layers)
Reversible Tractable Poor Poor O(#layers)
VAEs (optional) Tractable* Poor Good O(#layers)

@ There is no silver bullet in generative modeling.






