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Overview

So far in this course: mainly supervised learning

Language modeling was our one unsupervised task; we broke it down
into a series of prediction tasks

e This was an example of distribution estimation: we'd like to learn a
distribution which looks as much as possible like the input data.

@ This lecture: basic concepts in probabilistic modeling

@ Following two lectures: more recent approaches to unsupervised
learning



N
Maximum Likelihood

@ We already used maximum likelihood in this course for training
language models. Let's cover it in a bit more generality.
@ Motivating example: estimating the parameter of a biased coin

e You flip a coin 100 times. It lands heads Ny = 55 times and tails
Nt = 45 times.
e What is the probability it will come up heads if we flip again?
@ Model: flips are independent Bernoulli random variables with
parameter 6.

e Assume the observations are independent and identically distributed

(i.id.)



Maximum Likelihood

The likelihood function is the probability of the observed data, as a
function of 6.

In our case, it's the probability of a particular sequence of H's and T's.

Under the Bernoulli model with i.i.d. observations,

L(6) = p(D) = 6"(1 — )

This takes very small values (in this case,
L(0.5) = 0.5190 ~ 7.9 x 1031)

@ Therefore, we usually work with log-likelihoods:
0(0) = log L(#) = Ny log 6 + Nt log(1 —0)

o Here, £(0.5) = log 0.51% = 100log 0.5 = —69.31



Maximum Likelihood

Ny =55, Ny =45
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Maximum Likelihood

@ Good values of 6 should assign high probability to the observed data.
This motivates the maximum likelihood criterion.

@ Remember how we found the optimal solution to linear regression by
setting derivatives to zero? We can do that again for the coin

example.
ds d
0= (Nylog 0 + Ntlog(1 — 0))
_Nu Nt
0 1-90

@ Setting this to zero gives the maximum likelihood estimate:

Ny

b, = —1H__
ML= N N



Maximum Likelihood

@ This is equivalent to minimizing cross-entropy. Let t; = 1 for heads
and t; = 0 for tails.

Lee=) —tilogh — (1 t;)log(1—0)
= —Nylog — Nt log(1l —0)
= —(0)



Maximum Likelihood

@ Recall the Gaussian, or normal,
distribution:

N(xi 1, 0) = (X‘“)2>

1
V2ro P ( 202
@ The Central Limit Theorem says
that sums of lots of independent

random variables are approximately
Gaussian. o

@ In machine learning, we use =
Gaussians a lot because they make
the calculations easy.

T ep---



Maximum Likelihood

@ Suppose we want to model the distribution of temperatures in
Toronto in March, and we've recorded the following observations:
-25 -99 -121 -89 -6.0 -48 24
@ Assume they're drawn from a Gaussian distribution with known
standard deviation o = 5, and we want to find the mean p.
@ Log-likelihood function:
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Maximum Likelihood

@ Maximize the log-likelihood by setting the derivative to zero:
N
1 d
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@ Solving we get u = % ZINZI x()
@ This is just the mean of the observed values, or the empirical mean.



Maximum Likelihood

@ In general, we don't know the true standard deviation o, but we can

solve for it as well.

@ Set the partial derivatives to zero, just like in linear regression.
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N
Maximum Likelihood

@ So far, maximum likelihood has told us to use empirical counts or
statistics:
Ny

e Bernoulli: 6 = N N
o Gaussian: =+ > x(0, 62 = L 37 (x() — )2
@ This doesn't always happen; e.g. for the neural language model, there
was no closed form, and we needed to use gradient descent.

@ But these simple examples are still very useful for thinking about
maximum likelihood.



-
Data Sparsity

@ Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

e E.g., what if you flip the coin twice and get H both times?

Ny 2

= = =1
Ny+ Nt 240

Ot

@ Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

o If you observe a single T in the test set, the likelihood is —oo.



The following slides are just some extra
mathematical knowledge parameter
estimations



Bayesian Parameter Estimation (optional)

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.
@ The Bayesian approach treats the parameters as random variables as
well.
@ To define a Bayesian model, we need to specify two distributions:
e The prior distribution p(8), which encodes our beliefs about the
parameters before we observe the data
e The likelihood p(D | @), same as in maximum likelihood
@ When we update our beliefs based on the observations, we compute
the posterior distribution using Bayes' Rule:

_ p0)p(D]0)
POIP) = T o@)piol o) do

@ We rarely ever compute the denominator explicitly.




Bayesian Parameter Estimation (optional)

@ Let's revisit the coin example. We already know the likelihood:
L(6) = p(D) = 6™/(1 — )M

@ It remains to specify the prior p(6).

o We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.

e But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta distribution:

M(a+ b)
r(a)r(p)

e This notation for proportionality lets us ignore the normalization
constant:

p(0; a, b) = 62711 — )P L.

p(6; a, b) o< H271(1 — )1,



Bayesian Parameter Estimation (optional)

@ Beta distribution for various values of a, b:
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@ Some observations:

o The expectation E[f] = a/(a + b).
e The distribution gets more peaked when a and b are large.
e The uniform distribution is the special case where a = b = 1.
@ The main thing the beta distribution is used for is as a prior for the Bernoulli
distribution.



Bayesian Parameter Estimation (optional)

@ Computing the posterior distribution:
p(8]D) o p(8)p(D]8)
o [93—1(1 - e)b—l} [aNH(l - e)NT}
_ 93_1+NH(1 _ G)b—l—l—NT‘

@ This is just a beta distribution with parameters Ny + a and Nt + b.
@ The posterior expectation of 0 is:

Ny +a
Ny+ Nt+a+b

@ The parameters a and b of the prior can be thought of as
pseudo-counts.
o The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it's very
useful.

E[9| D] =



Bayesian Parameter Estimation (optional)

Bayesian inference for the coin flip example:

Small data setting Large data setting
Ny=2 Ntr=0 Ny =55, Ny =45
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When you have enough observations, the data overwhelm the prior.

1.0



|
Bayesian Parameter Estimation (optional)

@ What do we actually do with the posterior?

@ The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D'|D) = [ p(6] D) 6)db. (1)
@ For the coin flip example:
Oprea = Pr(x’ = H| D)
= /p(O | D)Pr(x’ = H|6)df
= /Beta(@; Ny + a,Nr + b)-6do

= EBcta(G;NH+a,NT+b) [9]
__ Nuta (2)
Ny + Nt +a+b’



Bayesian Parameter Estimation (optional)

Bayesian estimation of the mean temperature in Toronto

@ Assume observations are
i.i.d. Gaussian with known 0.5

standard deviation o and — Prior

unknown mean g — Posterior
0.20 — Posterior predictive

@ Broad Gaussian prior over p,
centered at 0 015

@ We can compute the posterior
and posterior predictive 0.10
distributions analytically (full
derivation in notes) 0.05

@ Why is the posterior predictive
0.00

distribution more spread out than ©=20 -15 -10 -5 o0 5 10 15
the posterior distribution?



Bayesian Parameter Estimation (optional)

Comparison of maximum likelihood and Bayesian parameter estimation
@ The Bayesian approach deals better with data sparsity

@ Maximum likelihood is an optimization problem, while Bayesian
parameter estimation is an integration problem

e This means maximum likelihood is much easier in practice, since we
can just do gradient descent

o Automatic differentiation packages make it really easy to compute
gradients

e There aren't any comparable black-box tools for Bayesian parameter
estimation (although Stan can do quite a lot)



Maximum A-Posteriori Estimation (optional)

@ Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

@ This converts the Bayesian parameter estimation problem into a
maximization problem

Oniap = arg meax p(6|D)
= arg max p(6,D)
= argmax p(0) p(D|0)

= arg max log p(0) + log p(D | 0)



Maximum A-Posteriori Estimation (optional)

@ Joint probability in the coin flip example:

log p(0, D) = log p(0) + log p(D | 0)
= const + (a — 1) log @ + (b — 1) log(1 — 0) + Ny log 6 + Nt log(1l — 0)
= const + (Ny +a—1)logf + (Nt + b — 1) log(1 — 0)

@ Maximize by finding a critical point

NH+a—1_NT+b—1

d
0= —logp(0,D) = 7 T g

~ a0

@ Solving for 6,
Ny+a—1

Ny+Nr+a+b—-2

Oviap =



Maximum A-Posteriori Estimation (optional)

Comparison of estimates in the coin flip example:

Formula Ny=2,Nr=0 Ny =55, Nt =45

O ﬁ 1 100 = 0.55
Oored R hTaTE 4 ~0.67 57~ 0548
Onar NS 3 =0.75 26~ 0.549

Oniap assigns nonzero probabilities as long as a, b > 1.



Maximum A-Posteriori Estimation (optional)

Comparison of predictions in the Toronto temperatures example

1 observation 7 observations
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