CS490/590 Lecture 12: Recurrent
Neural Nets & Attention

Eren Gultepe
SIUE

Adapted from: Jimmy Ba and Bo Wang

Overview

@ We've seen how to build neural nets to make predictions from a
fixed-size input to a fixed-size output
@ Sometimes we're interested in predicting sequences
e Speech-to-text and text-to-speech
o Caption generation
e Machine translation
o If the input is also a sequence, this setting is known as
sequence-to-sequence prediction.
@ We already saw one way of doing this: neural language models
o But autoregressive models are memoryless, so they can't learn
long-distance dependencies.
o Recurrent neural networks (RNNs) are a kind of architecture which can
remember things over time.

Overview

Recall that we made a Markov assumption:
p(wi|wi,...,wi—1) = p(w;| w3, w2, w;_1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words. But sometimes long-distance context can be
important.

Overview

@ Autoregressive models such as the neural language model are
memoryless, so they can only use information from their immediate
context (in this figure, context length = 1):

‘ hiddens 1 ‘ ‘ hiddens 2 ‘ ‘ hiddens 3 ‘ ‘ hiddens 4 ‘

NN

‘ word 1 ‘ ‘ word 2 ‘ word 3 ‘ word 4 ‘

@ If we add connections between the hidden units, it becomes a
recurrent neural network (RNN). Having a memory lets an RNN use
longer-term dependencies:

‘ hiddens 1 “ ‘ hiddens 2 “ ’ hiddens 3 H hiddens 4 ‘

’ word 4 ‘

L\
‘ word 1 ‘ ‘ word 2 ‘ word 3

Recurrent neural nets

@ We can think of an RNN as a dynamical system with one set of
hidden units which feed into themselves. The network’s graph would
then have self-loops.

@ We can unroll the RNN's graph by explicitly representing the units at
all time steps. The weights and biases are shared between all time

steps
o Except there is typically a separate set of biases for the first time step.

output units time 1 time 2 time 3
output units output units output units
A A A

hidden units time 1 time 2 time 3
hidden units hidden units hidden units

input units

‘IQ—D

time 1
input units

time 2
input units

time 3
input units

|
RNN examples

Now let's look at some simple examples of RNNs.

This one sums its inputs:

linear
output

linear
hidden
unit

T=1 T=; T=3 T=

|
RNN examples

This one determines if the total values of the first or second input are larger:

linear
hidden

-
Language Modeling

Back to our motivating example, here is one way to use RNNs as a language
model:

target = target = target =
!lquickll Ilbrownll llfoxll
time 1 | time2 | times
hidden units " | hidden units 7| hidden units
input = input = input =
"quick" "brown"

As with our language model, each word is represented as an indicator vector, the
model predicts a distribution, and we can train it with cross-entropy loss.

This model can learn long-distance dependencies.

Language Modeling

When we generate from the model (i.e. compute samples from its

distribution over sentences), the outputs feed back in to the network as
inputs.

time 1 g time 2 ot time 3 g time 4
hidden units 7| hidden units | hidden units " | hidden units
llquickll llbrownll llfox"

At training time, the inputs are the tokens from the training set (rather
than the network’s outputs). This is called teacher forcing.

Some remaining challenges:

@ Vocabularies can be very large once you include people, places, etc.

It's computationally difficult to predict distributions over millions of
words.

@ How do we deal with words we haven't seen before?

@ In some languages (e.g. German), it's hard to define what should be
considered a word.

-
Language Modeling

Another approach is to model text one character at a time!

target = target = target =
b ng W

nme 1 nme 2 tlme 3
hidden units hidden units hidden units

input = input = input =
" nan

This solves the problem of what to do about previously unseen words.
Note that long-term memory is essential at the character level!

Note: modeling language well at the character level requires multiplicative interactions,
which we're not going to talk about.

-
Language Modeling

From Geoff Hinton's Coursera course, an example of a paragraph
generated by an RNN language model one character at a time:

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters' sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

J. Martens and |. Sutskever, 2011. Learning recurrent neural networks with Hessian-free optimization.

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Neural Machine Translation

We'd like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What's wrong with the following setup?

French French French
word 1 word 2 word 3
hidden | [hidden] [hidden
units 1| "] units2 | "] units 3
English English English
word 1 word 2 word 3

Neural Machine Translation

We'd like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What's wrong with the following setup?

French French French
word 1 word 2 word 3
hidden | [hidden] [hidden
units 1| "] units2 | "] units 3
English English English
word 1 word 2 word 3

@ The sentences might not be the same length, and the words might
not align perfectly.

@ You might need to resolve ambiguities using information from later in
the sentence.

Neural Machine Translation

Sequence-to-sequence architecture: the network first reads and memorizes

the sentence. When it sees the end token, it starts outputting the
translation.

“le” “renTard” “brfm” “rapTide" <EOS>
THTHTHTHTH —~
“the” “quick” “brown” “fox” <EOS> “le” “renard” “brun” “rapide”

encoder decoder

The encoder and decoder are two different networks with different weights.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, K. Cho, B. van Merrienboer,
C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. EMNLP 2014.

Sequence to Sequence Learning with Neural Networks, llya Sutskever, Oriol Vinyals and Quoc Le, NIPS 2014.

|
What can RNNs compute?

In 2014, Google researchers built an encoder-decoder RNN that learns to
execute simple Python programs, one character at a time!

Input:
§=8584
for x in range(8):
§+=920
b=(1500+7)
print ((b+7567))

Target: 25011. Input:
vgppkn
sqgdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc
Target: hkhpg
Input:
i=8827
o= (i-5347) A training input with characters scrambled
print ((c+8704) if 2641<8500 else
5308)

Target: 1218.

Example training inputs

W. Zaremba and |. Sutskever, “Learning to Execute.” http://arxiv.org/abs/1410.4615

http://arxiv.org/abs/1410.4615

|
What can RNNs compute?

Some example results:

Input:

print (6652) .
Target: 6652.
“’Baseline” prediction: 6652.
”Naive” prediction: 6652.
”Mix” prediction: 6652.

”Combined” prediction: 6652.

Input:

d=5446

for x in range(8):d+=(2678 if 4803<2829 else 9848)
print ((d if 5935<4845 else 3043)).

Target: 3043.
“’Baseline” prediction: 3043.
”’Naive” prediction: 3043.
”Mix” prediction: 3043.

”Combined” prediction: 3043.

Take a look through the results (http://arxiv.org/pdf/1410.4615v2.pdf#page=10). It's fun

print ((5997-738)) .

Target: 5259.
”’Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.

”Combined” prediction: 5229.

Input:

print (((1090-3305)+9466)) .
Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.

”Combined” prediction: 7699.

to try to guess from the mistakes what algorithms it’s discovered.

http://arxiv.org/pdf/1410.4615v2.pdf#page=10

Backprop Through Time

As you can guess, we learn the RNN weights using backprop.

o In particular, we do backprop on the unrolled network. This is known
0 35 backprop through time.

-
Backprop Through Time

Here's the unrolled computation graph. Notice the weight sharing.

L

AN

(1 U) y(g)

(1)—->h 1)—> (2)_-»h 2)—>Z(3)—> 3)

|
Backprop Through Time

/E\ Activations:
T =

y(l Y) y(3) -
J J YO —

3) _
7“ R 7" 2) 7“ 0 —
o) =

(1)——>h 1)—> (2)—>p, 2)—>Z(3)—>h 3) =]
Z =

3) Parameters

N

@) — yz® 4 pt-1)
B — gi)(z(t))

r® — yp®

® = p(r®).

Forward Pass:

Y
]

-
Backprop Through Time

@ Now you know how to compute the derivatives using backprop
through time.

@ The hard part is using the derivatives in optimization. They can
explode or vanish. Addressing this issue will take all of the next

lecture.

Why Gradients Explode or Vanish

Consider a univariate version of the encoder network:

With linear activations:
Backprop updates:

on" jon™) = w1

m — Z(t+1)

- Exploding:
207 = 7 ¢/(29) ™
=11,T=5 = =117.4
Applying this recursively: v Oh()
J— — Vanishing:
A1) — WT—1¢/(Z(2)) . ..¢/(Z(T)) A(T) 8
(T
the Jacobian 8h(T) /oA w=09T=50 = DH = 0.00515

-
Why Gradients Explode or Vanish

@ More generally, in the multivariate case, the Jacobians multiply:

Ah(T) Ah(T) oOh(?)

oh(~ Hh(T-1) " gh@

@ Matrices can explode or vanish just like scalar values, though it's
slightly harder to make precise.
@ Contrast this with the forward pass:

e The forward pass has nonlinear activation functions which squash the
activations, preventing them from blowing up.

e The backward pass is linear, so it's hard to keep things stable. There's
a thin line between exploding and vanishing.

-
Why Gradients Explode or Vanish

@ We just looked at exploding/vanishing gradients in terms of the
mechanics of backprop. Now let's think about it conceptually.

@ The Jacobian Oh(T) /9h(1) means, how much does h{T) change when
you change h(1)?

@ Let's imagine an RNN's behavior as a dynamical system, which has
various attractors:

— Geoffrey Hinton, Coursera

@ Within one of the colored regions, the gradients vanish because even
if you move a little, you still wind up at the same attractor.

o If you're on the boundary, the gradient blows up because moving
slightly moves you from one attractor to the other.

Iterated Functions

@ Each hidden layer computes some function of the previous hiddens
and the current input. This function gets iterated:

h(4) — f(f(f(h(l) X(2)) X(3)) X(4)).

o Consider a toy iterated function: f(x) =3.5x (1 — x)

V)

VT

(]
9 large

) y=forof()
Lot

Keeping Things Stable

@ One simple solution: gradient clipping

o Clip the gradient g so that it has a norm of at most 7:
if [lgll > n:
ng

Il

@ The gradients are biased, but at least they don't blow up

g <

Without clipping ‘With clipping

J(w,b)

J(w,b)

— Goodfellow et al., Deep Learning

Long-Term Short Term Memory

@ Really, we're better off redesigning the architecture, since the
exploding/vanishing problem highlights a conceptual problem with
vanilla RNNs.

@ Long-Term Short Term Memory (LSTM) is a popular architecture
that makes it easy to remember information over long time periods.
e What's with the name? The idea is that a network’s activations are its
short-term memory and its weights are its long-term memory.
o The LSTM architecture wants the short-term memory to last for a long

time period.
@ It's composed of memory cells which have controllers saying when to
store or forget information.

-
Long-Term Short Term Memory

@ Replace each single unit in an RNN by a memory block -

Block,output
Inputs, \

outputs___y,]
from all

blocks /

Output Gate

Ct+1 = ¢t - forget gate 4+ new input - input gate

/ @ /=0,f =1 = remember the previous
Inputs,
ou{’;ufs value
from all . .
\blocks @ /=1,f =1 = add to the previous value

@ i=0,f =0 = erase the value

Inputs, \

outputs
from all

blocks /

@ j=1,f =0 = overwrite the value

Input Gate

Setting i = 0, f = 1 gives the reasonable
“default” behavior of just remembering things.

Block

inputs, outputs from all blocks

Long-Term Short Term Memory

@ In each step, we have a vector of memory cells c, a vector of hidden
units h, and vectors of input, output, and forget gates i, o, and f.

@ There's a full set of connections from all the inputs and hiddens to
the input and all of the gates:

it g

ft — o W< Yt)
ot o he—1
gt tanh

ct=froci1+irog:
h; = o; o tanh(c;)

o Exercise: show that if fi11 =1, iry1 =0, and oy = 0, the gradients
for the memory cell get passed through unmodified, i.e.

Ct = Cty1-

-
Long-Term Short Term Memory

@ Sound complicated? ML researchers thought so, so LSTMs were
hardly used for about a decade after they were proposed.

@ In 2013 and 2014, researchers used them to get impressive results on
challenging and important problems like speech recognition and
machine translation.

@ Since then, they've been one of the most widely used RNN
architectures.

@ There have been many attempts to simplify the architecture, but
nothing was conclusively shown to be simpler and better.

@ You never have to think about the complexity, since frameworks like
TensorFlow provide nice black box implementations.

-
Long-Term Short Term Memory

Visualizations:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Detour: Deep Residual Networks and Skip Connections

@ It turns out the intuition of using linear units to by-pass vanishing
gradient problem was a crucial idea behind the best ImageNet models

from 2015, deep residual nets.

Year
2010
2011
2012
2013
2014
2015

@ The idea is using linear skip connections to easily pass information

Model

Hand-designed descriptors + SVM
Compressed Fisher Vectors + SVM
AlexNet

a variant of AlexNet

GoogleNet

deep residual nets

directly through a network.

Top-5 error

28.2%
25.8%
16.4%
11.7%
6.6%
4.5%

Detour: Deep Residual Networks and Skip Connections

@ Recall: the Jacobian 9h(T) /9h(1) is the product of the individual

Jacobians:
Ah(T) Oh(T) oh(?)

oh@M ~ oh(T-1 """ 9h®
@ But this applies to multilayer perceptrons and conv nets as well! (Let
t index the layers rather than time.)

@ Then how come we didn't have to worry about exploding/vanishing
gradients until we talked about RNNs?
e MLPs and conv nets were at most 10s of layers deep.
o RNNs would be run over hundreds of time steps.
e This means if we want to train a really deep conv net, we need to
worry about exploding/vanishing gradients!

Detour: Deep Residual Networks and Skip Connections

@ The core idea of ResNet is to apply an identity skip connection similar
U-Net in Programming Assignment 2:

z=W®Ox 4 p®)
h = ¢(z)
y =x+W®h

@ This is called a residual block, and it's actually

pretty useful. y =x+F(x) é

@ Each layer adds something (i.e. a residual) to
the previous value, rather than producing an F(x) h

entirely new value.

@ Note: the network for F can have multiple
layers, be convolutional, etc. X

Detour: Deep Residual Networks and Skip Connections

@ We can string together a bunch of residual
blocks.

@ What happens if we set the parameters such

that F(x()) = 0 in every layer? Iij
3
o Then it passes x(1) straight through unmodified! 7 .
(3)
T

e This means it's easy for the network to

represent the identity function. a5

4

Y 2}

x() = x(¢+1) 5 (64+1) ==

+ Ox S

T oOF 1

—) (4 2L Fz® j
X (+ 5) e [
2z

@ As long as the Jacobian 0.F/0x is small, the
derivatives are stable.

N
Attention

@ We have seen a few RNN-based sequence prediction models.

o It is still challenging to generate long sequences, when the decoders
only has access to the final hidden states from the encoder.
e Machine translation: it's hard to summarize long sentences in a single
vector, so let's allow the decoder peek at the input.
e Vision: have a network glance at one part of an image at a time, so
that we can understand what information it's using

N
Attention

@ The introduction of attention drastically improves the performance on
the long sequences.

@ Attention-based models scale very well with the amount of training
data. After 40GB text from reddit, the model generates:

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top
of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be

seen from the air without having to move too much to see them — they were so close they could touch
their horns.

https://talktotransformer.com/

Attention-Based Machine Translation

@ Remember the encoder/decoder architecture for machine translation:
<EOS>

i T

||—>1|—>||—>||—>||—>ITl—>ITI—>II
T T

— =

I I

A B C <EOS> 4

= —>

@ The network reads a sentence and stores all the information in its
hidden units.

@ Some sentences can be really long. Can we really store all the
information in a vector of hidden units?

o Let's make things easier by letting the decoder refer to the input
sentence.

Attention-Based Machine Translation

@ We'll look at the translation model from the classic paper:
Bahdanau et al., Neural machine translation by jointly learning to
align and translate. ICLR, 2015.

@ Basic idea: each output word comes from one word, or a handful of
words, from the input. Maybe we can learn to attend to only the
relevant ones as we produce the output.

Attention-Based Machine Translation

@ The model has both an encoder and a decoder. The encoder
computes an annotation of each word in the input.

o |t takes the form of a bidirectional RNN. This just means we have an
RNN that runs forwards and an RNN that runs backwards, and we
concantenate their hidden vectors.

e The idea: information earlier or later in the sentence can help
disambiguate a word, so we need both directions.
e The RNN uses an LSTM-like architecture called gated recurrent units.

hW h® h® h®
< < < l—
> > —

word 1 word 2 word 3 word 4

Attention-Based Machine Translation

@ The decoder network is also an RNN. Like the encoder/decoder translation
model, it makes predictions one word at a time, and its predictions are fed
back in as inputs.

@ The difference is that it also receives a context vector c(t) at each time step,
which is computed by attending to the inputs.

output output output output
word 1 word 2 word 3 word 4
1)} 2 3 ‘ 4
s® J s s@ s l_’ decoder
/ /output /:utput /)utput
1
C() C(z) word 1 (5) word 2 (4) word 3
| T | T | T | T encoder
input input input input
word 1 word 2 word 3 word 4

Attention-Based Machine Translation

@ The context vector is computed as a weighted average of the

encoder’s annotations.
() — Z a,-jh(j)
J

@ The attention weights are computed as a softmax, where the inputs
depend on the annotation and the decoder’s state:

0 — exp(&jj)
’ Zj/ exp(dij)
Gy = F(s0-1), h0)

@ Note that the attention function, f depends on the annotation vector,
rather than the position in the sentence. This means it's a form of
content-based addressing.

o My language model tells me the next word should be an adjective.
Find me an adjective in the input.

-
Example: Pooling

Consider obtain a context vector from a set of annotations.

Example: Pooling
We can use average pooling but it is content independent.
1 | 0 | 5 l 1 | 0 | 5 2
context = avg-pooling(| 3 0 -1) = 0.33x|3 +033x 0 +033x-1/= 06

012 0 1 20 11
1 0 5
3 0 -1

|
Examplel: Bahdanau's Attention

Content-based addressing/lookup using attention.
query key/ value

1/ (1L 0 5 1 0 5

context=attention(1 |, |3 0 -1) =alx |3 +o2% 0|+ta3x -1
0 0 1]2 0 1 2

| f(qeuryl, keyl) | a1
attention = softmax(| f{ qeury2, key2) |) | o

weights " % Tadd <
| Hgeury3, key3) 3 1 0
— 1 P
0 E

|
Examplel: Bahdanau's Attention

Consider a linear attention function, f.
query key/value
1| [1/0]5] 1| o] 5
context = attention(1 |, l3]0]1) =al x |3 Ho2x 0 |+a3x|-1

0 0,12 0 1 2

. ol
f(geuryl, keyl) aq L

DA .
S VRN o 1 0

1/1(0| |1|3]|0

query key | 0' 1

|
Examplel: Bahdanau's Attention

Vectorized linear attention function.
query key/value

] [ife]s ool s e
context:attention(‘ 1 !, ‘ 3 ‘ 0 ‘4) z0,0zx‘ 3 }+0 x| 0 ‘+0,93><‘ 1 ‘ = ‘ o
o o2 of 2 e

11 1 -1
1111 -1 0.02
attention =softmax(|0 0| 0 1) =,
weights] P
1 0 5 i 0.98" ‘ 1
3.0 -1 2 ' ‘7
0 1 2 2 ‘T

Attention-Based Machine Translation

@ Here's a visualization of the attention maps at each time step.

agreement
European
Economic
Area
signed
August
1992
<end>

o
=
=

o
accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

environment
environments

is
the
least
known
of

1]
convient
de

noter
que
P
environnement
marin

est

le

moins

connu

de

I
environnement

<end=>

@ Nothing forces the model to go linearly through the input sentence,

but somehow it learns to do it.

e It's not perfectly linear — e.g., French adjectives can come after the

nouns.

Attention-Based Machine Translation

@ The attention-based translation model does much better than the
encoder/decoder model on long sentences.

30
25|
2 20t
]
3] [
= 154
L’.E : :
& 10H — RNNsearch-50 f. ... : o
----- RNNsearch-30 | : o NN =
5H — - RNNenec-50 B
-+ - RNNenc-30 :
0 I i i i |
0 10 20 30 40 50 60

Sentence length

Attention-Based Caption Generation

@ Attention can also be used to understand images.
@ We humans can't process a whole visual scene at once.

e The fovea of the eye gives us high-acuity vision in only a tiny region of
our field of view.
o Instead, we must integrate information from a series of glimpses.

@ The next few slides are based on this paper from the Uof T machine
learning group:
Xu et al. Show, Attend, and Tell: Neural Image Caption Genera-
tion with Visual Attention. ICML, 2015.

|
Attention-Based Caption Generation

@ The caption generation task: take an image as input, and produce a
sentence describing the image.

e Encoder: a classification conv net (VGGNet, similar to AlexNet).
This computes a bunch of feature maps over the image.
@ Decoder: an attention-based RNN, analogous to the decoder in the
translation model
e In each time step, the decoder computes an attention map over the
entire image, effectively deciding which regions to focus on.

o It receives a context vector, which is the weighted average of the conv
net features.

Attention-Based Caption Generation

@ This lets us understand where the network is looking as it generates a

sentence.

S EEEENEw e -

water

A stop sign is on a road with a

bird flying over body

;\n

A dog is standing on a hardwood floor.

A woman is throwing a frisbee in a park.
- mountain in the background.

A giraffe standing in a forest with
trees in the background.

A group of people sitting on a boat
in the water.

A I\ttlegﬁ sitting on a bed with
a teddy bear.

Attention-Based Caption Generation

@ This can also help us understand the network’s mistakes.

A man wearing a hat and
a hat on a skateboard.

A large white bird standing in a forest.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.

