Lecture 19: Generative Adversarial Networks

Roger Grosse

1 Introduction

Generative modeling is a type of machine learning where the aim is to
model the distribution that a given set of data (e.g. images, audio) came
from. Normally this is an unsupervised problem, in the sense that the
models are trained on a large collection of data. For instance, recall that
the MNIST dataset was obtained by scanning handwritten zip code digits
from envelopes. So consider the distribution of all the digits people ever
write in zip codes. The MNIST training examples can be viewed as samples
from this distribution. If we fit a generative model to MNIST, we're trying
to learn about the distribution from the training samples. Notice that this
formulation doesn’t use the labels, so it’s an unsupervised learning problem.

Figure (a) shows a random subset of the MNIST training examples,
and Figure [I[(b) shows some samples from a generative model (called a
Deep Boltzmann Machine) trained on MNISTH; this was considered an im-
pressive result back in 2009. The model’s samples are visually hard to dis-
tinguish from the training examples, suggesting that the model has learned
to match the distribution fairly closely. (We’ll see later why this can be
misleading.) But generative modeling has come a long way since then, and
in fact has made astounding progress over the past 4 years. Figure (c)
shows some samples from a Generative Adversarial Network (GAN) trained
on the “dog” category from the CIFAR-10 object recognition dataset in
20157} this was considered an impressive result at the time. Fast forward
two years, and GANs are now able to produce convincing high-resolution
imagesEl, as exemplified in Figure (d)

Why train a generative model?

e Most straightforwardly, we may want to generate realistic samples,
e.g. for graphics applications. (Unfortunately, there are more nefarious
uses as well, such as producing realistic fake videos of politicians.)

e We may wish to model the data distribution in order to tell which
of several candidate outputs is more likely; e.g., see Lecture 7, which
used speech recognition as a motivation for language modeling.

e We may want to train a generative model in order to learn useful
high-level features which can be applied to other tasks. This got a

!Salakhutdinov and Hinton, 2009. Deep Boltzmann machines.

2Denton et al., 2015. Deep generative image models using a Laplacian pyramid of
adversarial networks.

3Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and
variation.

Generative models are sometimes
used for supervised learning, but

we won’t consider that here. See

Gaussian discriminant analysis or
naive Bayes in CSC411.



Figure 1: (a) Training images from the MNIST dataset. (b) Samples from a
Deep Boltzmann Machine (Salakhutdinov and Hinton, 2009). (c) Samples
from a GAN trained on the “dog” category of CIFAR-10 (Denton et al.,
2015) (d) Samples from a GAN trained on images of celebrities (Karras et
al., 2017).



lot of attention about 10 years ago, with the motivation that there’s
a lot more unlabeled data than labeled data, and having more data
ought to let us learn better features. This motivation has declined
in importance due to the availability of large labeled datasets such
as ImageNet, and to the surprising success of supervised features at
transferring to other tasks.

Last time, we saw very simple examples of learning distributions, i.e. fit-
ting Gaussian and Bernoulli distributions using maximum likelihood. This
lecture and the next one are about deep generative models, where we use
neural nets to learn powerful generative models of complex datasets. There
are four kinds of deep generative models in widespread use today:

Generative adversarial networks (the topic of today’s lecture)

Reversible architectures (Lecture 20)

Autoregressive models (Lectures 7, 15-17, and 20)

e Variational autoencoders (beyond the scope of this class)

Three of these four kinds of generative models are typically trained with
maximum likelihood. But Generative Adversarial Networks (GANsSs)
are based on a very different idea: we’d like the model to produce samples
which are indistinguishable from the real data, as judged by a discriminator
network whose job it is to tell real from fake. GANs are probably the current
state-of-the-art generative model, as judged by the quality of the samples.

2 Implicit Generative Models

GANSs are a kind of implicit generative model, which means we train a
neural net to produce samples; this implicitly defines a probability distri-
bution, namely the distribution of samples that the network generates. But
the model doesn’t explicitly represent the distribution, in the sense that it
can’t answer other queries, such as the probability assigned to a particular
observation.

The architecture of an implicit generative model, or density network,
is as follows: we first sample a code vector z from a simple, fixed distribu-
tion such as a uniform distribution or a standard Gaussian N(0,I). Note
that this distribution is fixed, i.e. not learned. This code vector is then
passed as input to a deterministic generator network G, which produces
an output sample x = G(z). Schematically:

sample x = G(2z)

code vector VA

You can learn about variational
autoencoders in csc412.

When does it suffice to train an
implicit generative model, and
when would you like an explicit
one?
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Figure 2: A 1-dimensional generator network.

Implicit generative models are pretty hard to think about, since the relation-
ship between the network weights and the density is complicated. Figure
shows an example of a generator network which encodes a univariate dis-
tribution with two different modes. Try to understand why it produces the
density shown.

When we train an implicit generative model of images, we’re aiming to
learn the following;:

Each dimension of the code
vector is sampled independently
from a simple distribution,
e.g. Gaussian or uniform.

Thisis fed to a
(deterministic)
generator network.

This probably seems preposterous at first; how can you encode something as
complex as a probability distribution over images in terms of a deterministic
mapping from a spherical Gaussian distribution? But amazingly, it works.

3 Generative Adversarial Networks

Recall that implicit generative models don’t let us query the probability
of an observation, so clearly we can’t train them using maximum likeli-

The network
outputs an image.



hood. Generative adversarial networks use an elegant training criterion
that doesn’t require computing the likelihood. In particular, if the genera-
tor is doing a good job of modeling the data distribution, then the generated
samples should be indistinguishable from the true data. So the idea behind
GANs is to train a discriminator network whose job it is to classify
whether an observation (e.g. an image) is from the training set or whether
it was produced by the generator. The generator is evaluated based on the
discriminator’s inability to tell its samples from data.
To rephrase this, we simultaneously train two different networks:

e The generator network G, defined as in Section [2, which tries to gen-
erate realistic samples

e The discriminator network D, which is a binary classification network
which tries to classify real vs. fake samples. It takes an input x and
computes D(x), the probability it assigns to x being real.

The two networks are trained competitively: the generator is trying to fool
the discriminator, and the discriminator is trying not to be fooled by the
generator. This is shown schematically as follows:

D(x)

discriminator

N

X OR x = G(2)
A
real-world
image generator
A
A
y/ code vector

The discriminator is trained just like a logistic regression classifier. Its
cost function is the cross-entropy for classifying real vs. fake:

JIp = Exp|=log D(x)] + E4[—log(1 — D(G(2)))] (1)

Here, x ~ D denotes sampling from the training set. If the discriminator has
low cross entropy, that means it can easily distinguish real from fake; if it has
high cross-entropy, that means it can’t. Therefore, the most straightforward
criterion for the generator is to maximize the discriminator’s cross-entropy.
This is equivalent to making the generator’s cost function the negative cross-
entropy:

Jo=-Ip

= const + E,[log(1 — D(G(z)))] @

The cost function is written as an
expectation, but we estimate it
using samples (training images or
samples from the generator) in
order to update the weights with
SGD. This is known as Monte
Carlo estimation.
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Figure 3: (a) Updating the discriminator. (b) Updating the generator.

Note that the generator has no control over the first term in Eqn. [I} which
is why we simply write it as constant.
Consider the cost function from the perspective of the generator. Given
a fixed generator, the discriminator will learn to minimize its cross-entropy.
The generator knows this, so it wants to maximize the minimum cross-
entropy achievable by any discriminator. Mathematically, it’s trying to
compute
arg max miin JIp. (3)

This this cost function involves a min inside a max, it’s called the minimax
formulation. It’s an example of a perfectly competitive game, or zero-
sum game, since the generator and discriminator have exactly opposing
objectives.

The generator and discriminator are trained jointly, so they can adapt
to each other. Both networks are trained using backprop on their cost func-
tions. This is handled automatically by autodiff packages, but conceptually
we can understand it as shown in Figure[3] In practice, we don’t actually do
separate updates for the generator and discriminator; rather, both networks
are updated in a single backprop step. Figure [4] shows a cartoon example
of a GAN being trained on a 1-dimensional toy dataset.

3.1 A Better Cost Function

The minimax formulation is one way of training GANs, but it has a prob-
lem: saturation. Recall from Lecture 4 that if you use a logistic activation
function and squared error loss to do classifiation, the cost function satu-
rates when the predictions are very wrong. l.e., the cost function flattens
out, resulting in small updates to the weights. We saw that this is prob-
lematic for optimization, since if the prediction is very wrong, we ought to
make a large update. Our solution was to switch to the cross-entropy loss,
which treats a prediction of 0.001 for the correct category as much worse
than a prediction of 0.01. Hence, there would be a strong gradient signal

backprop the derivatives,
but don’t modify the
discriminator weights

flip the sign
of the derivatives

update the generator
weights using backprop

Unfortunately, not having a unified
cost function for training both
networks makes the training
dynamics much more complicated
compared with the optimization
setting, as we assumed in the rest
of this course. This means GAN
training can be pretty finnicky.
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Figure 4: Cartoon of training a GAN to model a 1-dimensional distribution.
Black: the data density. Blue: the discriminator function. Green: the
generator distribution. Arrows: the generator function. First the discrim-
inator is updated, then the generator, and so on. Figure from Goodfellow
et al., 2014, “Generative adversarial nets”.

-

pushing the network to assign probability 0.01 rather than 0.001, and then
0.1 rather than 0.01, and so on.

The same reasoning applies to GANs. Observe what happens if the
discriminator is doing very well, or equivalently, the generator is doing very
badly. This means D(G(z)) is very close to 0, and hence Jg is close to 0
(the worst possible value). If we were to change the generator’s weights just
a little bit, then Jg& would still be close to 0. This means we’re in a plateau
of the minimax cost function, i.e. the generator’s gradient is close to 0, and
it will hardly get updated.

We can apply a fix that’s roughly analogous to when we switched from
logistic-least-squares to logistic-cross-entropy in Lecture 4. In particular, we
modify the generator’s cost function to magnify small differences in D(G(z))
when it is close to 0. Mathematically, we replace the generator cost from
Eqn. 2] with the modifed cost:

Ja = E,[—log D(G(z))] (4)

This cost function is really unhappy when the discriminator is able to con-
fidently recognize one of its samples as fake, so the generator gets a strong
gradient signal pushing it to make the discriminator less confident. Even-
tually, it should be able to produce samples which actually fool the dis-
criminator. The relationship between the two generator costs is shown in
Figure [5] The modified generator cost is typically much more effective than
the minimax formulation, and is what’s nearly always used in practice.

4 Style Transfer with CycleGAN

GANs by themselves are pretty impressive, judged by their ability to pro-
duce convincing samples. But we can also use GANs as components of a
bigger architecture, which lets us do some pretty neat things. One of the
most surprising recent examples is the cycle consistent GAN, or Cycle-
GAN, an architecture for doing style transfer of images. Recall that the
style transfer task is to take an image in one style (such as a photograph)
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Figure 5: Comparison of the minimax generator cost to the modified one.

and transform it to be a different style (such as a van Gogh painting) while
preserving the content of the image (e.g. objects and their locations).

It’s unlikely that we have lots of pairs of images in both styles (e.g. a
photograph and a van Gogh painting that matches it). So let’s assume we
have unpaired data, i.e. collections of unrelated images in the two styles.

We’d like to train two generators: one to go from Style A to Style B,
and one to go from Style B to Style A. From how we stated the problem,
we have two desiderata:

e we’d like the generator to produce outputs which are plausible images
of the target style, and

e we’d like it to preserve the structure of the original image.

We satisfy the first criterion using the GAN generator objective, which in
this context is termed the discriminator cost. l.e., we train a discrimina-
tor network to distinguish between outputs of the first generator and train-
ing images from Style B, and then another discriminator to do the same for
Style A. In order to satisfy the second criterion, we impose a cycle con-
sistency cost, or reconstruction cost. Observe that if both generators
preserve the structure, and you run both in sequence, you should get back
the original image. The reconstruction cost penalizes the squared error in
reconstructing the original image, i.e. ||x — G2(G1(x))||?. This architecture
is shown in Figure [6]

You'll get a chance to implement this architecture for Assignment 4.
You can find lots cool examples of style transfer here:

https://github.com/junyanz/CycleGAN

Think how many layers of
abstraction we have here. The
CycleGAN is composed of multiple
neural nets, which are composed of
layers, which are composed of
units and connections, which
compute simple arithmetic
operations. Moving between layers
of abstraction is part of being a
good computer scientist.


https://github.com/junyanz/CycleGAN

The discriminator tries to
distinguish generated zebra
images from real ones

Discriminator loss: GAN
generator objective, i.e. negative
D log probability D assigns to the
sample being real

Real zebra image

T T T - Reconstruction loss: squared
error between the original image
and the reconstruction

Input image

‘ Generator 1 learns to map Generated sample Generator 2 learns to map Reconstruction
(real horse image) from horse images to zebra from zebra images to horse
images while preserving the images while preserving the
structure structure

Total loss = discriminator loss + reconstruction loss

Figure 6: The CycleGAN architecture.
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