
Lecture 6: Automatic Differentiation

Roger Grosse

1 Introduction

Last week, we saw how the backpropagation algorithm could be used to
compute gradients for basically any neural net architecture, as long as it’s a
feed-forward computation and all the individual pieces of the computation
are differentiable. Backprop is based on the computation graph, and it
basically works backwards through the graph, applying the chain rule at
each node. In that lecture, we would derive the algorithm by hand, in a
form that could be translated into a NumPy program. Implementing backprop manually

is like writing assembly language:
it’s good to do a couple times so
that you understand how things
work beneath the hood.

This is how one
would have implemented a neural net 10 years ago.

But, as you may have noticed, the procedure we developed was entirely
mechanical. In this lecture, we’ll see how to write an automatic differenti-
ation engine — a program that builds the computation graph and applies
the backprop updates, all without us having to calculate any derivatives by
hand. Over the past decade, Autodiff has existed since the 70s,

but somehow ML people never
picked it up until the past decade,
despite spending countless hours
calculating derivatives.

automatic differentiation frameworks such as
Theano, Autograd, TensorFlow, and PyTorch have made it incomparably
easier to implement backprop for fancy neural net architectures, thereby
dramatically expanding the range and complexity of network architectures
we’re able to train.

In this lecture, we’ll focus on Autograd1, a lightweight automatic dif-
ferentiation system written by Dougal Maclaurin, David Duvenaud, Matt
Johnson, and Jamie Townsend. While the major neural net frameworks
(TensorFlow, PyTorch, etc.) have giant codebases, much of their complex-
ity comes from supporting a wide variety of neural net layers and opera-
tions, and from making sure everything gets the maximum performance out
of the GPU. By contrast, Autograd is just an autodiff package: it doesn’t
include GPU support, and it’s not aiming for comprehensive coverage of
modern neral net architectures. But this means the implementation is very
clean and simple. We’ll actually be using a stripped-down, pedagogical im-
plementation of Autograd called Autodidact2, whose core funcationality is
implemented in less than 200 lines of Python code!

Currently, Autograd isn’t used much for production neural nets due to
its lack of GPU support. For the remainder of the course, we’ll use PyTorch,
a more comprehensive neural net framework whose autodiff functionality is
loosely based on Autograd. But if you wish you could just use Autograd
for everything, you’re in luck: some of the Autograd creators are working
on a framework called JAX3 which compiles Autograd computation graphs
into efficient GPU code. It’s a bit experimental now (having been released

1https://github.com/HIPS/autograd
2https://github.com/mattjj/autodidact
3https://github.com/google/jax

1

https://github.com/HIPS/autograd
https://github.com/mattjj/autodidact
https://github.com/google/jax


December 2018), but you might see this gain more traction over the next
few years because of its slick, NumPy-like API.

Some clarifications about terminology are in order. In our field, we usu-
ally use “backprop” to refer to the mathematical algorithm and “autodiff”
to refer to a software implementation, but the terms are somewhat inter-
changeable. Sometimes “backprop” just refers to autodiff applied to neural
nets, though really the algorithm is no different from the more general case.
“Autograd” is the name of a particular software package, but it’s often used
incorrectly as a generic term for autodiff (e.g. “PyTorch Autograd”). The
particular kind of autodiff we use to compute gradients is known as re-
verse mode autodiff because it goes backwards through the computation
graph. There’s also a forward mode autodiff, which is used to compute
directional derivatives. In one of the most elegant pieces of

code I’ve ever seen, it’s possible to
implement forward mode autodiff
in only three lines by calling
reverse mode twice.
https://github.com/renmengye/

tensorflow-forward-ad/issues/

2

We won’t used forward mode in this class.

2 What Autodiff Isn’t

One way to motivate autodiff is to contrast it with some related but distinct
concepts.

2.1 Autodiff is not finite differences

An easy way to compute derivatives is to approximate them numerically
using finite differences, or numerical differentiation. We just use the
definition of derivatives in terms of a limit, but simply plug in a small value
of h. The most obvious is the one-sided definition:

∂

∂xi
f(x1, . . . , xN ) ≈ f(x1, . . . , xi + h, . . . , xN )− f(x1, . . . , xi, . . . , xN )

h

There’s also a more numerically stable two-sided version:

∂

∂xi
f(x1, . . . , xN ) ≈ f(x1, . . . , xi + h, . . . , xN )− f(x1, . . . , xi − h, . . . , xN )

2h

The approximations are illustrated in Figure 1. Finite differences are com-
monly used to test the implementation of gradient computations. I.e., we
check that the analytic form for the derivatives is close to the finite difference
approximation. Since finite differences only requires calculating function
values, this is a pretty easy test to write.

However, finite differences is not a practical way to compute derivatives
for neural net training. The most obvious reason is that it’s very expensive:
you need to do a separate forward pass for each partial derivative. It’s
also numerically unstable, since you first subtract two very close values and
then divide by a small number. By contrast, autodiff is both efficient and
numerically stable.

2.2 Autodiff is not symbolic differentiation

If you’ve used a mathematical computing environment such as Mathemat-
ica or Maple, it’s likely you’ve made use of symbolic differentiation.
Here, the aim is to take a mathematical expression and return a mathemat-
ical expression for the derivative. This is convenient for relatively simple
expressions:

2

https://github.com/renmengye/tensorflow-forward-ad/issues/2
https://github.com/renmengye/tensorflow-forward-ad/issues/2
https://github.com/renmengye/tensorflow-forward-ad/issues/2


Figure 1: One-sided vs. two-sided finite differences.

but can get unwieldy for more complex expressions:

This is unavoidable in symbolic differentiation, since there might not be a
convenient expression for the derivative.

But notice that part of the problem here is that the expression has a
bunch of repeated terms. Imagine we instead defined variables to represent
some of these terms, e.g. z = b1 + w1 x, and simply referenced those vari-
ables in the expression. If you do this consistently enough, you’ll basically
wind up with autodiff.

3 What autodiff is

Recall from Lecture 4, when we came up with a procedure to compute the
derivatives of a simple univariate cost function:

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

L = 1

y = y − t
z = y σ′(z)

w = z x

b = z

Previously, we would implement a procedure like this as a Python pro-
gram. But an autodiff package would build up data structures to represent
these computations, and then it can simply execute the right-hand side.

3



One thing we’ll change from Lecture 4 is the level of granularity. When
we derived backprop by hand, we drew a computation graph in terms of
high-level variables that were meaningful in terms of the neural net archi-
tecture, and each node corresponded to a mathematical expression that
might involve multiple operations. But if the computer is going to do all
the work, we might as well define a more fine-grained computation graph,
where the nodes correspond to individual primitive operations, or ops.
Ops are basically simple operations, such as multiplication, for which we
directly implement the derivatives. An autodiff package would typically
break the above computation down into a sequence of primitive ops:

Original program:

z = wx+ b

y =
1

1 + exp(−z)

L =
1

2
(y − t)2

Sequence of ops:

t1 = wx

z = t1 + b

t3 = −z
t4 = exp(t3)

t5 = 1 + t4

y = 1/t5

t6 = y − t
t7 = t26

L = t7/2

This is all invisible to the user. To the user, it feels like you just write
ordinary code for the forward pass, and then call a function to compute
the derivatives. E.g., Figure 2 shows an implementation of gradient descent
for logistic regression in Autograd. This program includes a call to grad,
which takes in a function and spits out another function which computes
its derivatives. Essentially, this one function is the only API you need
to learn to use Autograd. Other than that, writing Autograd code looks
and feels like writing NumPy. Autograd achieves this by defining its own
NumPy package (autograd.numpy), which exposes roughly the same API
as NumPy, but which does a bunch of additional bookkeeping to build the
computation graph needed by grad.

4 Implementing autodiff

We now see how to implement a simple but powerful autodiff system. We’ll
follow the implementation of Autodidact4, a simpler pedagogical implemen-
tation of Autograd. But despite its simplicity, it still gives the full power of
autodiff; for instance, you can easily differentiate through a backprop com-
putation (i.e. compute second derivatives by calling grad twice), something
which is actually fairly awkward to do in TensorFlow or PyTorch! You’re
encouraged to read the code; the core functionality is less than 200 lines of
Python!

There are basically three parts to the Autodidact implementation:

1. Tracing the computation to build the computation graph

4https://github.com/mattjj/autodidact

4

https://github.com/mattjj/autodidact


Figure 2: Logistic regression implemented in Autograd.

2. Implementing vector-Jacobian products for each primitive op

3. Backprop itself

4.1 Tracing the computation

Since backprop is done on the computation graph, any autodiff package
must first somehow build the computation graph. The approach taken
by TensorFlow is for the user to build the graph directly. I.e., the user
explicitly builds the graph node by node, and then executes it. PyTorch and
Autograd instead build the graph implicitly by tracing the computation
in the forward pass. This results in a much cleaner interface, because the
user doesn’t have to worry about any distinction between graph building
and execution phases.

The main building block of the computation graph is the Node class,
which (as you might guess) represents one node of the graph. It keeps track
of four pieces of information:

1. value, the actual value computed on a particular set of inputs

2. fun, the primitive operation defining the node

3. args and kwargs, the arguments the op was called with

4. parents, the parent Nodes

In order to implicitly build the computation graph, the autograd.numpy

module defines an API which looks and feels like NumPy, but where each op

5



Figure 3: autograd.numpy wraps around NumPy operations to implicitly
build the computation graph.

Figure 4: Computation graph built for a simple program. The function
logistic2 is simply an explicit representation of the NumPy functions
called when you use arithmetic operators.

wraps around the corresponding NumPy function and, instead of returning
an array, returns a Node instance containing the array. In particular, it
first unboxes its inputs (retrieves the values from the Node objects), feeds
those values to the NumPy function, and then boxes the result into a Node

instance, as shown in Figure 3. Figure 4 shows an example of a small
computation graph built up in this way.

The code that builds the computation graph requires the fanciest Python
gymnastics of the whole package. We’re not going to look at it in detail,
but I encourage you to read it.

4.2 Vector-Jacobian products

Recall from Lecture 4 that the vectorized version of Backprop is defined in
terms of vector-Jacobian products (VJPs). The Jacobian matrix is

6



the matrix of partial derivatives:

J =
∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn


Recall that the error signal for each node is computed using the formula

vi =
∑

j∈Ch(vi)

∂vj

∂vi

>
vj .

This can be equivalently written as

vi
> =

∑
j∈Ch(vi)

vj
>∂vj

∂vi
,

emphasizing that each piece of the computation involves multiplying a vec-
tor by the Jacobian. Hence the term VJP.

Note that we do not explicitly construct the Jacobian in order to com-
pute a VJP. For instance, if a node represents a simple elementwise opera-
tion, e.g.

y = exp(z),

then the Jacobian is a diagonal matrix: Think about why the Jacobian is
diagonal. Why isn’t this true of,
say, softmax? How would you
efficiently implement a VJP for
softmax?

∂y

∂z
=

exp(z1) 0
. . .

0 exp(zD)

 .

This matrix is size D × D, and the explicit matrix-vector product would
require O(D2) operations. But the VJP itself can be implemented in linear
time:

z =
∂y

∂z

>
y = exp(z) ◦ y.

Hence, we need to write procedures to compute VJPs, but we never actually
construct the Jacobian.

Take a look at numpy/numpy_vjps.py. This module defines VJPs for
each NumPy op. Each line is a call to defvjp which is a thin wrapper
which just adds stuff to a Python dict which stores all the VJP functions.
For each op, we need to specify a VJP for each of its arguments. Exercise: write VJPs for division

and elementwise log.
The VJP is

represented as a function which takes in the output error signal g, the value
of the node ans, and the arguments to the op (which, remember, are Node

instances). The function returns the input error signal for the corresponding
argument. Some examples are shown in Figure 5

4.3 Backprop

Now we can finally implement backprop! Tracing the computation required
the fanciest Python tricks, and implementing VJPs required the most lines
of code. It turns out that backprop itself is pretty straightforward.

The one conceptual leap is to think about it as a message-passing pro-
cedure. Consider the following computation graph:

7



Figure 5: Some example VJPs defined in numpy/numpy vjps.py.

The way we described it in Lecture 4, in order to compute z, you’d find the
expressions for its child nodes, and differentiate each of them weigh respect
to z:

z =
∂r

∂z
r +

∂s

∂z
s +

∂t

∂z
t

The problem is, this breaks modularity because now the implementation of
z needs to understand the implementations of all its child nodes in order to
compute its error signal.

Instead, we can reformulate the algorithm in terms of messages being
passed between nodes. Consider the following portion of a graph:

z receives messages from each of its children, corresponding to their VJPs.
But z doesn’t know the messages correspond to VJPs; all it knows is that it
needs to sum them together to compute z. Once it does that, it computes
the VJPs with respect to each of its arguments, and sends them as messages
to each of its parent nodes. If you think about it, this is exactly the same
sequence of computations as we discussed in Lecture 4, but now each node
only has to understand how to compute its own VJPs.

8



Finally, with this understanding, here’s the code which does backprop.
It takes two arguments: end_node, the output node of the computation
graph, and g, the output error signal L. In this course, we never have any
reason to use anything other than the scalar value 1 for the output error
signal. However, Autograd lets you use vector-valued outputs, and you can
specify any error signal you like. One use for more general output

error signals is if you want to
hardcode the backprop procedure
for a network while still using
autodiff to backprop through
individual pieces of it. One
example of this is RevNets (Gomez
et al., “The reversible residual
network: backprop without storing
activations”), which uses a special
backprop procedure that avoids
storing the activations in memory.

The grad function is simply a shallow wrapper around backward_pass.
We haven’t talked about it this way, but the entire backprop algorithm is
really just computing a VJP, where the Jacobian is of the entire forward
computation (viewed as a function mapping parameters to loss). Here’s the
code:

So, that’s it. That describes the whole implementation of the core func-
tionality of an autodiff package. You’re encouraged to read the Autodi-
dact code5. Also, definitely check out the Autograd examples page6, which
contains lots of fun examples like computing higher-order derivatives and
differentiating through a fluid dynamics simulator.

5https://github.com/mattjj/autodidact
6https://github.com/HIPS/autograd

9

https://github.com/mattjj/autodidact
https://github.com/HIPS/autograd

	Introduction
	What Autodiff Isn't
	Autodiff is not finite differences
	Autodiff is not symbolic differentiation

	What autodiff is
	Implementing autodiff
	Tracing the computation
	Vector-Jacobian products
	Backprop


