
CS490/590 Lecture 8: 
Optimization 

Eren Gultepe
Department of Computer Science SIUE 

Adapted from Roger Grosse



Overview

We’ve talked a lot about how to compute gradients. What do we
actually do with them?

Today’s lecture: various things that can go wrong in gradient descent,
and what to do about them.

Let’s take a break from equations and think intuitively.

Let’s group all the parameters (weights and biases) of our network
into a single vector θ.



Optimization

Visualizing gradient descent in one dimension: w ← w − ε dEdw

The regions where gradient descent converges to a particular local
minimum are called basins of attraction.



Optimization

Visualizing two-dimensional optimization problems is trickier. Surface plots
can be hard to interpret:



Optimization

Recall:

Level sets (or contours): sets of points on which E(θ) is constant

Gradient: the vector of partial derivatives

∇θE =
∂E
∂θ

=

(
∂E
∂θ1

,
∂E
∂θ2

)
points in the direction of maximum increase
orthogonal to the level set

The gradient descent updates are opposite the gradient direction.



Optimization



Local Minima

Recall: convex functions don’t have local minima. This includes linear
regression and logistic regression.

But neural net training is not convex!

Reason: if a function f is convex, then for any set of points x1, . . . , xN
in its domain ,

f (λ1x1+· · ·+λNxN) ≤ λ1f (x1)+· · ·+λN f (xN) for λi ≥ 0,
∑
i

λi = 1.

Neural nets have a weight space symmetry: we can permute all the
hidden units in a given layer and obtain an equivalent solution.
Suppose we average the parameters for all K ! permutations. Then we
get a degenerate network where all the hidden units are identical.
If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

Even though any multilayer neural net can have local optima, we usually
don’t worry too much about them.



Saddle points

At a saddle point ∂E
∂θ = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.



Saddle points

At a saddle point ∂E
∂θ = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.



Saddle points

Suppose you have two hidden units with identical incoming and
outgoing weights.

After a gradient descent update, they will still have identical weights.
By induction, they’ll always remain identical.

But if you perturbed them slightly, they can start to move apart.

Important special case: don’t initialize all your weights to zero!

Instead, use small random values.



Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold activations

logistic activations & least squares



Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold activations

logistic activations & least squares



Plateaux

An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

zi = hi φ
′(z)

wij = zi xj

If φ′(zi ) is always close to zero, then the weights will get stuck.

If there is a ReLU unit whose input zi is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.



Ravines

Long, narrow ravines:

Lots of sloshing around the walls, only a small derivative along the slope of
the ravine’s floor.



Ravines

Suppose we have the following dataset for linear regression.

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2

98.8 0.00279 4.1
...

...
...

wi = y xi

Which weight, w1 or w2, will receive a larger gradient descent update?

Which one do you want to receive a larger update?

Note: the figure vastly understates the narrowness of the ravine!



Ravines

Or consider the following dataset:

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8

998.3 1003.4 2.9
...

...
...



Ravines

To avoid these problems, it’s a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

x̃j =
xj − µj
σj

Hidden units may have non-centered activations, and this is harder to
deal with.

One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.



Momentum

Unfortunately, even with these normalization tricks, narrow ravines
will be a fact of life. We need algorithms that are able to deal with
them.

Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

p← µp− α∂E
∂θ

θ ← θ + p

α is the learning rate, just like in gradient descent.

µ is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 1?

If µ = 1, conservation of energy implies it will never settle down.



Momentum

Unfortunately, even with these normalization tricks, narrow ravines
will be a fact of life. We need algorithms that are able to deal with
them.

Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

p← µp− α∂E
∂θ

θ ← θ + p

α is the learning rate, just like in gradient descent.

µ is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 1?

If µ = 1, conservation of energy implies it will never settle down.



Momentum

In the high curvature directions, the
gradients cancel each other out, so
momentum dampens the oscillations.

In the low curvature directions, the
gradients point in the same direction,
allowing the parameters to pick up speed.

If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

− α

1− µ
· ∂E
∂θ

This suggests if you increase µ, you should lower α to compensate.

Momentum sometimes helps a lot, and almost never hurts.



Ravines

Even with momentum and normalization tricks, narrow ravines are
still one of the biggest obstacles in optimizing neural networks.

Empirically, the curvature can be many orders of magnitude larger in
some directions than others!

An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

There is an optimization procedure called Adam which uses just a
little bit of curvature information and often works much better than
gradient descent. It’s available in all the major neural net frameworks.



Learning Rate

The learning rate α is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, . . .).



Training Curves

To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

Warning: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can’t guarantee convergence.



Metrics for Binary classification

Recall that the average of 0–1 loss is the error rate, or fraction
incorrectly classified.

I We noted we couldn’t optimize it, but it’s still a useful metric to
track.

I Equivalently, we can track the accuracy, or fraction correct.
I Typically, the error rate behaves similarly to the cross-entropy loss,

but this isn’t always the case.

Another way to break down the accuracy:
I P=num positive; N=num negative; TP=true positives; TN=true

negatives
I FP=false positive or a type I error
I FN=false negative or a type II error

Acc =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN

Discuss: When might accuracy present a misleading picture of
performance?



The limitations of accuracy

Accuracy is highly sensitive to class imbalance.
I Suppose you’re trying to screen patients for a particular disease,

and under the data generating distribution, 1% of patients have
that disease.

I How can you achieve 99% accuracy?
I You are able to observe a feature which is 10x more likely in a

patient who has cancer. Does this improve your accuracy?

Sensitivity and specificity are useful metrics even under class
imbalance.

I Sensitivity = TP
TP+FN [True positive rate]

I Specificity = TN
TN+FP [True negative rate]

I What happens if our classification problem is not truly
(log-)linearly seperable?

I How do we pick a threshold for y = σ(x)?



Designing diagnostic tests

You’ve developed a binary prediction model to indicate whether
someone has a specific disease

What happens to sensitivity and specificity as you slide the
threshold from left to right?



Sensitivity and specificity

Tradeoff between sensitivity and specificity



Receiver Operating Characteristic (ROC) curve

Receiver Operating Characteristic (ROC) curve

y axis: sensitivity

x axis: 100-specificity

Area under the ROC curve (AUC) is a useful metric to track if a
binary classifier achieves a good tradeoff between sensitivity and
specificity.



Metrics for Multi-Class classification

You might also be interested in how frequently certain classes are
confused.
Confusion matrix: K ×K matrix; rows are true labels, columns
are predicted labels, entries are frequencies
Question: what does the confusion matrix look like if the classifier
is perfect?



Stochastic Gradient Descent

So far, the cost function E has been the average loss over the training
examples:

E(θ) =
1

N

N∑
i=1

L(i) =
1

N

N∑
i=1

L(y(x(i),θ), t(i)).

By linearity,

∂E
∂θ

=
1

N

N∑
i=1

∂L(i)

∂θ
.

Computing the gradient requires summing over all of the training
examples. This is known as batch training.

Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!



Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

θ ← θ − α∂L
(i)

∂θ

SGD can make significant progress before it has even looked at all the data!

Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

E
[
∂L(i)

∂θ

]
=

1

N

N∑
i=1

∂L(i)

∂θ
=
∂E
∂θ

.

Problem: if we only look at one training example at a time, we can’t exploit
efficient vectorized operations.



Stochastic Gradient Descent

Compromise approach: compute the gradients on a medium-sized set
of training examples, called a mini-batch.

Each entire pass over the dataset is called an epoch.

Stochastic gradients computed on larger mini-batches have smaller
variance:

Var

[
1

S

S∑
i=1

∂L(i)

∂θj

]
=

1

S2
Var

[
S∑

i=1

∂L(i)

∂θj

]
=

1

S
Var

[
∂L(i)

∂θj

]

The mini-batch size S is a hyperparameter that needs to be set.

Too large: takes more memory to store the activations, and longer to
compute each gradient update
Too small: can’t exploit vectorization
A reasonable value might be S = 100.



Stochastic Gradient Descent: Batch Size

The mini-batch size S is a hyperparameter that needs to be set.

Large batches: converge in fewer weight updates because each
stochastic gradient is less noisy.
Small batches: perform more weight updates per second because each
one requires less computation.

Claim: If the wall-clock time were proportional to the number of
FLOPs, then S = 1 would be optimal.

100 updates with S = 1 requires the same FLOP count as 1 update
with S = 100.
Rewrite minibatch gradient descent as a for-loop:

All else being equal, you’d prefer to compute the gradient at a fresher
value of θ. So S = 1 is better.



Stochastic Gradient Descent: Batch Size

The reason we don’t use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

Small batches: An update with S = 10 isn’t much more expensive
than an update with S = 1.

Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S .

Cartoon figure, not drawn to scale:

Since GPUs afford more parallelism, they saturate at a larger batch
size. Hence, GPUs tend to favor larger batch sizes.



Stochastic Gradient Descent: Batch Size

The convergence benefits of larger batches also see diminishing returns.

Small batches: large gradient noise, so large benefit from increased batch size

Large batches: SGD approximates the batch gradient descent update, so no
further benefit from variance reduction.

Right: # iterations to reach target validation error as a function of batch size.
(Shallue et al., 2018)



Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent



SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:

Use a large learning rate early in training so you can get close to the
optimum
Gradually decay the learning rate to reduce the fluctuations



SGD Learning Rate

Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.



RMSprop and Adam

Recall: SGD takes large steps in directions of high curvature and
small steps in directions of low curvature.

RMSprop is a variant of SGD which rescales each coordinate of the
gradient to have norm 1 on average. It does this by keeping an
exponential moving average sj of the squared gradients.

The following update is applied to each coordinate j independently:

sj ← (1− γ)sj + γ[∂J∂θj ]2

θj ← θj −
α

√
sj + ε

∂J
∂θj

If the eigenvectors of the Hessian are axis-aligned (dubious
assumption), then RMSprop can correct for the curvature. In
practice, it typically works slightly better than SGD.

Adam = RMSprop + momentum

Both optimizers are included in TensorFlow, Pytorch, etc.



Recap

Problem Diagnostics Workarounds
incorrect gradients finite differences fix them, or use autodiff

local optima (hard) random restarts
symmetries visualize W initialize W randomly

slow progress slow, linear training curve increase α; momentum
instability cost increases decrease α

oscillations fluctuations in training curve decrease α; momentum
fluctuations fluctuations in training curve decay α; iterate averaging

dead/saturated units activation histograms initial scale of W; ReLU
ill-conditioning (hard) normalization; momentum;

Adam; second-order opt.




