
CS490/590 Lecture 6: 
Backpropagation

Eren Gultepe
Department of Computer Science 

SIUE 

Adapted from Roger Grosse and Jimmy Ba



Overview

We’ve seen that multilayer neural networks are powerful. But how can
we actually learn them?

Backpropagation is the central algorithm in this course.

It’s is an algorithm for computing gradients.
Really it’s an instance of reverse mode automatic differentiation, which
is much more broadly applicable than just neural nets.

This is “just” a clever and efficient use of the Chain Rule for derivatives.
We’ll see how to implement an automatic differentiation system next
week.



Recap: Gradient Descent

Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

Conceptually, not any different from what we’ve seen so far — just higher
dimensional and harder to visualize!

We want to compute the cost gradient dJ /dw, which is the vector of
partial derivatives.

This is the average of dL/dw over all the training examples, so in this
lecture we focus on computing dL/dw.



Univariate Chain Rule

We’ve already been using the univariate Chain Rule.

Recall: if f (x) and x(t) are univariate functions, then

d

dt
f (x(t)) =

df

dx

dx

dt
.



Univariate Chain Rule

Recall: Univariate logistic least squares model

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives. ∂L
∂w
, ∂L∂b



Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx + b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx + b)− t)2

]
=

1

2

∂

∂w
(σ(wx + b)− t)2

= (σ(wx + b)− t)
∂

∂w
(σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b)
∂

∂w
(wx + b)

= (σ(wx + b)− t)σ′(wx + b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx + b)− t)2

]
=

1

2

∂

∂b
(σ(wx + b)− t)2

= (σ(wx + b)− t)
∂

∂b
(σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b)
∂

∂b
(wx + b)

= (σ(wx + b)− t)σ′(wx + b)

What are the disadvantages of this approach?



Univariate Chain Rule

A more structured way to do it

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

dL
dy

= y − t

dL
dz

=
dL
dy

σ′(z)

∂L
∂w

=
dL
dz

x

∂L
∂b

=
dL
dz

Remember, the goal isn’t to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.



Recap: Computation Graph

A computational graph is a directed graph where the nodes
correspond to operations or variables.

Variables can feed their value into operations, and operations can
feed their output into other operations. This way, every node in the
graph defines a function of the variables.

For example : we want to plot the operation z = x + y , then



Recap: Computation Graph

A computational graph is a directed graph where the nodes
correspond to operations or variables.

Variables can feed their value into operations, and operations can
feed their output into other operations. This way, every node in the
graph defines a function of the variables.

Another example : we want to plot the operation f = (x + y) ∗b, then



A simple example

f (x , y , z) = (x + y) ∗ z

q = x + y ; f = q ∗ z



A simple example : Forward Pass

f (x , y , z) = (x + y) ∗ z

q = x + y ; f = q ∗ z

e.g ., x = −1, y = 2, z = - 3 

then, q = 1, f = −3

Want,
∂f

∂x
,
∂f

∂y
,
∂f

∂z



A simple example : Backward Pass

f (x , y , z) = (x + y) ∗ z

q = x + y ; f = q ∗ z 

e.g ., x = −1, y = 2, z = -3

baseline :
∂f

∂f
= 1



A simple example : Backward Pass

f (x , y , z) = (x + y) ∗ z

q = x + y ; f = q ∗ z 

e.g ., x = −1, y = 2, z = -3

baseline :
∂f

∂f
= 1

∂f

∂z
=
∂f

∂f

∂f

∂z
= q = 1

∂f

∂q
=
∂f

∂f

∂f

∂q
= z = −3



A simple example : Backward Pass

f (x , y , z) = (x + y) ∗ z

q = x + y ; f = q ∗ z 

e.g ., x = −1, y = 2, z = -3
∂f

∂x
=
∂f

∂q

∂q

∂x
= (−3) ∗ (1) = −3

∂f

∂y
=
∂f

∂q

∂q

∂y
= (−3) ∗ (1) = −3



A quick summary:

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

A simple example : Backward Pass



A quick summary:

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

A simple example : Backward Pass



A quick summary:

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

A simple example : Backward Pass



A quick summary:

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

A simple example : Backward Pass



A quick summary:

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

A simple example : Backward Pass



Univariate Chain Rule

We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.



Univariate Chain Rule

A slightly more convenient notation:

Use y to denote the derivative dL/dy , sometimes called the error signal.

This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

This is not a standard notation, but I couldn’t find another one that I liked.

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = y − t

z = y σ′(z)

w = z x

b = z



Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?
This requires the multivariate Chain Rule!

L2-Regularized regression

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w 2

Lreg = L+ λR

Multiclass logistic regression

z` =
∑
j

w`jxj + b`

yk =
ezk∑
` e

z`

L = −
∑
k

tk log yk



Multivariate Chain Rule

Suppose we have a function f (x , y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d

dt
f (x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Example:

f (x , y) = y + exy

x(t) = cos t

y(t) = t2

Plug in to Chain Rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

= (yexy ) · (− sin t) + (1 + xexy ) · 2t



Multivariable Chain Rule

In the context of backpropagation:

In our notation:

t = x
dx

dt
+ y

dy

dt



Backpropagation

Full backpropagation algorithm:

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).



Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w 2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz

= y σ′(z)

w= z
∂z

∂w
+RdR

dw

= z x +Rw

b = z
∂z

∂b

= z



Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi )

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi )

w
(1)
ij = zi xj

b
(1)
i = zi



Vector Form

Computation graphs showing individual units are cumbersome.

As you might have guessed, we typically draw graphs over the
vectorized variables.

We pass messages back analogous to the ones for scalar-valued nodes.



Vector Form

Consider this computation graph:

Backprop rules:

zj =
∑
k

yk
∂yk
∂zj

z =
∂y

∂z

>
y,

where ∂y/∂z is the Jacobian matrix:

∂y

∂z
=


∂y1
∂z1

· · · ∂y1
∂zn

...
. . .

...
∂ym
∂z1

· · · ∂ym
∂zn





Vector Form

Examples

Matrix-vector product

z = Wx
∂z

∂x
= W x = W>z

Elementwise operations

y = exp(z)
∂y

∂z
=

exp(z1) 0
. . .

0 exp(zD)

 z = exp(z) ◦ y

Note: we never explicitly construct the Jacobian. It’s usually simpler
and more efficient to compute the VJP directly.



Vector Form

Full backpropagation algorithm (vector form):

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).

It’s a scalar, which we can treat as a 1-D vector.



Vector Form

MLP example in vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h ◦ σ′(z)

W(1) = zx>

b(1) = z



Backpropagation

Backprop as message passing:

Each node receives a bunch of messages from its children, which it
aggregates to get its error signal. It then passes messages to its
parents.
This provides modularity, since each node only has to know how to
compute derivatives with respect to its arguments, and doesn’t have
to know anything about the rest of the graph.



Computational Cost

Computational cost of forward pass: one add-multiply operation per
weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

Computational cost of backward pass: two add-multiply operations
per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.



Closing Thoughts

Backprop is used to train the overwhelming majority of neural nets today.

Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally implausible.

No evidence for biological signals analogous to error derivatives.
All the biologically plausible alternatives we know about learn much
more slowly (on computers).
So how on earth does the brain learn?



Closing Thoughts

By now, we’ve seen three different ways of looking at gradients:

Geometric: visualization of gradient in weight space
Algebraic: mechanics of computing the derivatives
Implementational: efficient implementation on the computer

When thinking about neural nets, it’s important to be able to shift
between these different perspectives!




