
CS490 Lecture 2: Linear Regression

Adapted from Roger Grosse
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Overview

First learning algorithm of the course: linear regression

Task: predict scalar-valued targets, e.g. stock prices (hence
“regression”)
Architecture: linear function of the inputs (hence “linear”)

Example of recurring themes throughout the course:

choose an architecture and a loss function
formulate an optimization problem
solve the optimization problem using one of two strategies

direct solution (set derivatives to zero)
gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra
make a linear model more powerful using features
understand how well the model generalizes
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Problem Setup

Want to predict a scalar t as a function of a scalar x

Given a dataset of pairs {(x(i), t(i))}Ni=1

The x(i) are called inputs, and the t(i) are called targets.
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Problem Setup

Model: y is a linear function of x :

y = wx + b

y is the prediction

w is the weight

b is the bias

w and b together are the parameters

Settings of the parameters are called hypotheses
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What is Linear? 1 feature vs D features
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If we have only 1 feature:
y = wx+ b where w, x, b ∈ R.

y is linear in x.

If we have D features:
y = w>x + b where w,x ∈ RD,
b ∈ R
y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.



Problem Setup

Loss function: squared error

L(y , t) =
1

2
(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

E(w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
wx (i) + b − t(i)

)2
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Problem Setup
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Problem Setup

Surface plot vs. contour plot
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Problem setup

Suppose we have multiple inputs x1, . . . , xD . This is referred to as
multivariable regression.

This is no different than the single input case, just harder to visualize.

Linear model:
y =

∑
j

wjxj + b
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Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.

w = (w1, . . . ,wD)> x = (x1, . . . , xD)

y = w>x + b

This is simpler and much faster:
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Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!

Vectorized code is much faster

Cut down on Python interpreter overhead
Use highly optimized linear algebra libraries
Matrix multiplication is very fast on a Graphics Processing Unit (GPU)
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Vectorization

We can take this a step further. Organize all the training examples
into a matrix X with one row per training example, and all the targets
into a vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

w>x(1) + b
...

w>x(N) + b

 =

y (1)

...

y (N)

 = y
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Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

E =
1

2N
‖y − t‖2

In Python:

Example in tutorial

12 / 30



Solving the optimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

Multivariate generalization: set the partial derivatives to zero. We call
this direct solution.
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Direct solution

Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

∂

∂x1
f (x1, x2) = lim

h→0

f (x1 + h, x2)− f (x1, x2)

h

To compute, take the single variable derivatives, pretending the other
arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′

wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′

wj′xj′ + b


= 1
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Direct solution

Chain rule for derivatives:
∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj

∂L
∂b

= y − t

We will give a more precise statement of the Chain Rule in a few
weeks. It’s actually pretty complicated.
Cost derivatives (average over data points):

∂E
∂wj

=
1

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

∂E
∂b

=
1

N

N∑
i=1

y (i) − t(i)
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Direct solution

The minimum must occur at a point where the partial derivatives are
zero.

∂E
∂wj

= 0
∂E
∂b

= 0.

If ∂E/∂wj 6= 0, you could reduce the cost by changing wj .

This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in tutorial and the readings.

Optimal weights:
w = (X>X)−1X>t

Linear regression is one of only a handful of models in this course that
permit direct solution.
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Direct Solution: Calculus

Lets consider a cartoon visualization of J (w) where w is single
dimensional

Left We seek w = w∗ that minimizes J (w)

Right The gradients of a function can tell us where the maxima and
minima of functions lie

Strategy: Write down an algebraic expression for ∇wJ (w). Set
equation to 0. Solve for w
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Gradient Descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

17 / 30



Iterative solution: Gradient Descent

Most optimization problems we cover in this course don’t have a
direct solution.
Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.
Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.
We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.



Gradient descent

Observe:

if ∂E/∂wj > 0, then increasing wj increases E .
if ∂E/∂wj < 0, then increasing wj decreases E .

The following update decreases the cost function:

wj ← wj − α
∂E
∂wj

= wj −
α

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

α is a learning rate. The larger it is, the faster w changes.

We’ll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001
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Gradient descent

This gets its name from the gradient:

∂E
∂w

=


∂E
∂w1

...
∂E
∂wD


This is the direction of fastest increase in E .

Update rule in vector form:

w← w − α ∂E
∂w

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.
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Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_

regression.pdf#page=21
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Gradient descent

Why gradient descent, if we can find the optimum directly?

GD can be applied to a much broader set of models
GD can be easier to implement than direct solutions, especially with
automatic differentiation software
For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).
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Feature mappings

Suppose we want to model the following data

x

t

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

One option: fit a low-degree polynomial; this is known as polynomial
regression

y = w3x
3 + w2x

2 + w1x + w0

Do we need to derive a whole new algorithm?
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Feature mappings

We get polynomial regression for free!

Define the feature map

φ(x) =


1
x
x2

x3


Polynomial regression model:

y = w>φ(x)

All of the derivations and algorithms so far in this lecture remain
exactly the same!
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Fitting polynomials

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : The model is too simple - does not fit the data.

x

t

M = 0

0 1

−1

0

1

Overfitting : The model is too complex - fits perfectly, does not generalize.

x

t

M = 9

0 1

−1

0

1
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Generalization

We would like our models to generalize to data they haven’t seen
before

The degree of the polynomial is an example of a hyperparameter,
something we can’t include in the training procedure itself

We can tune hyperparameters using a validation set:
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Foreshadowing

Feature maps aren’t a silver bullet:

It’s not always easy to pick good features.
In high dimensions, polynomial expansions can get very large!

Until the last few years, a large fraction of the effort of building a
good machine learning system was feature engineering

We’ll see that neural networks are able to learn nonlinear functions
directly, avoiding hand-engineering of features

30 / 30




