CS490 Lecture 2: Linear Regression

Eren Gultepe - SIUE

Adapted from Roger Grosse

イロト イヨト イヨト イヨト

Overview

• First learning algorithm of the course: linear regression

- Task: predict scalar-valued targets, e.g. stock prices (hence "regression")
- Architecture: linear function of the inputs (hence "linear")

Overview

• First learning algorithm of the course: linear regression

- Task: predict scalar-valued targets, e.g. stock prices (hence "regression")
- Architecture: linear function of the inputs (hence "linear")
- Example of recurring themes throughout the course:
 - choose an architecture and a loss function
 - formulate an optimization problem
 - solve the optimization problem using one of two strategies
 - direct solution (set derivatives to zero)
 - gradient descent
 - vectorize the algorithm, i.e. represent in terms of linear algebra
 - make a linear model more powerful using features
 - understand how well the model generalizes

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Want to predict a scalar t as a function of a scalar x

- Given a dataset of pairs $\{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^{N}$
- The $\mathbf{x}^{(i)}$ are called inputs, and the $t^{(i)}$ are called targets.

• • = • • = •

• Model: y is a linear function of x:

$$y = wx + b$$

- y is the prediction
- w is the weight
- *b* is the bias
- w and b together are the parameters
- Settings of the parameters are called hypotheses

∃ →

What is Linear? 1 feature vs D features

- If we have only 1 feature: y = wx + b where $w, x, b \in \mathbb{R}$.
- y is linear in x.

- If we have *D* features: $y = \mathbf{w}^{\top} \mathbf{x} + b$ where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{D}$, $b \in \mathbb{R}$
- y is linear in **x**.

Relation between the prediction y and inputs \mathbf{x} is linear in both cases.

• Loss function: squared error

$$\mathcal{L}(y,t) = \frac{1}{2}(y-t)^2$$

y - t is the residual, and we want to make this small in magnitude
The ¹/₂ factor is just to make the calculations convenient.

・ロト ・聞ト ・ヨト ・ヨト

Loss function: squared error

$$\mathcal{L}(y,t) = \frac{1}{2}(y-t)^2$$

• y - t is the residual, and we want to make this small in magnitude

- The $\frac{1}{2}$ factor is just to make the calculations convenient.
- Cost function: loss function averaged over all training examples

$$\mathcal{E}(w, b) = \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - t^{(i)} \right)^2$$
$$= \frac{1}{2N} \sum_{i=1}^{N} \left(wx^{(i)} + b - t^{(i)} \right)^2$$

▲圖▶ ▲ 国▶ ▲ 国▶

▲ロ ▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Surface plot vs. contour plot

- Suppose we have multiple inputs x_1, \ldots, x_D . This is referred to as multivariable regression.
- This is no different than the single input case, just harder to visualize.
- Linear model:

$$y = \sum_j w_j x_j + b$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Computing the prediction using a for loop:

```
y = b
for j in range(M):
    y += w[j] * x[j]
```

• For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$\mathbf{w} = (w_1, \dots, w_D)^\top$$
 $\mathbf{x} = (x_1, \dots, x_D)$
 $y = \mathbf{w}^\top \mathbf{x} + b$

• This is simpler and much faster:

y = np.dot(w, x) + b

イロト 不得 トイヨト イヨト

Why vectorize?

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
 - Cut down on Python interpreter overhead
 - Use highly optimized linear algebra libraries
 - Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

(本部)と 本語 と 本語を

 We can take this a step further. Organize all the training examples into a matrix **X** with one row per training example, and all the targets into a vector t.

one feature across all training examples $\mathbf{X} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)\top} \\ \mathbf{x}^{(3)\top} \end{pmatrix} = \begin{pmatrix} 8 & 0 & 3 & 0 \\ 6 & -1 & 5 & 3 \\ 2 & 5 & -2 & 8 \end{pmatrix}$ one training example (vector)

<ロト < 団ト < 団ト < 団ト

• Computing the predictions for the whole dataset:

$$\mathbf{X}\mathbf{w} + b\mathbf{1} = \begin{pmatrix} \mathbf{w}^{\top}\mathbf{x}^{(1)} + b \\ \vdots \\ \mathbf{w}^{\top}\mathbf{x}^{(N)} + b \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{pmatrix} = \mathbf{y}$$

• Computing the squared error cost across the whole dataset:

$$\mathbf{y} = \mathbf{X}\mathbf{w} + b\mathbf{1}$$
$$\mathcal{E} = \frac{1}{2N} \|\mathbf{y} - \mathbf{t}\|^2$$

• In Python:

• Example in tutorial

소리가 소문가 소문가 소문가 ...

Solving the optimization problem

- We defined a cost function. This is what we'd like to minimize.
- Recall from calculus class: minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.
- Multivariate generalization: set the partial derivatives to zero. We call this direct solution.

Direct solution

• Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$\frac{\partial}{\partial x_1}f(x_1,x_2) = \lim_{h \to 0} \frac{f(x_1+h,x_2) - f(x_1,x_2)}{h}$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y

$$\frac{\partial y}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\sum_{j'} w_{j'} x_{j'} + b \right]$$
$$= x_j$$
$$\frac{\partial y}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{j'} w_{j'} x_{j'} + b \right]$$
$$= 1$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Direct solution

• Chain rule for derivatives:

$$\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} \frac{\partial y}{\partial w_j}$$
$$= \frac{\mathrm{d}}{\mathrm{d}y} \left[\frac{1}{2} (y - t)^2 \right] \cdot x_j$$
$$= (y - t) x_j$$
$$\frac{\partial \mathcal{L}}{\partial b} = y - t$$

- We will give a more precise statement of the Chain Rule in a few weeks. It's actually pretty complicated.
- Cost derivatives (average over data points):

$$\frac{\partial \mathcal{E}}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x_j^{(i)}$$
$$\frac{\partial \mathcal{E}}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} - t^{(i)}$$

米国 とくほとくほど

Direct solution

• The minimum must occur at a point where the partial derivatives are zero.

$$\frac{\partial \mathcal{E}}{\partial w_j} = 0 \qquad \frac{\partial \mathcal{E}}{\partial b} = 0.$$

- If $\partial \mathcal{E} / \partial w_j \neq 0$, you could reduce the cost by changing w_j .
- This turns out to give a system of linear equations, which we can solve efficiently. **Full derivation in tutorial and the readings.**
- Optimal weights:

$$\mathbf{w} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{t}$$

 Linear regression is one of only a handful of models in this course that permit direct solution.

ヘロト 人間 ト 人 ヨ ト 一

Direct Solution: Calculus

- Lets consider a cartoon visualization of $\mathcal{J}(w)$ where w is single dimensional
- Left We seek $w = w^*$ that minimizes $\mathcal{J}(w)$
- **Right** The gradients of a function can tell us where the maxima and minima of functions lie
- Strategy: Write down an algebraic expression for $\nabla_w \mathcal{J}(w)$. Set equation to 0. Solve for w

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

- 4 週 ト - 4 三 ト - 4 三 ト

Iterative solution: Gradient Descent

- Most optimization problems we cover in this course don't have a direct solution.
- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

• Observe:

- if $\partial \mathcal{E}/\partial w_j > 0$, then increasing w_j increases \mathcal{E} .
- if $\partial \mathcal{E} / \partial w_j < 0$, then increasing w_j decreases \mathcal{E} .
- The following update decreases the cost function:

$$egin{aligned} & w_j \leftarrow w_j - lpha rac{\partial \mathcal{E}}{\partial w_j} \ & = w_j - rac{lpha}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) \, x_j^{(i)} \end{aligned}$$

- α is a learning rate. The larger it is, the faster **w** changes.
 - We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001

ヘロト 人間 ト 人 ヨ ト 一

• This gets its name from the gradient:

$$\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial \mathcal{E}}{\partial w_1} \\ \vdots \\ \frac{\partial \mathcal{E}}{\partial w_D} \end{pmatrix}$$

• This is the direction of fastest increase in \mathcal{E} .

ヘロト 人間 ト くほ ト くほ トー

• This gets its name from the gradient:

$$\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial \mathcal{E}}{\partial w_1} \\ \vdots \\ \frac{\partial \mathcal{E}}{\partial w_D} \end{pmatrix}$$

 $\bullet\,$ This is the direction of fastest increase in ${\cal E}.$

• Update rule in vector form:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \mathcal{E}}{\partial \mathbf{w}}$$
$$= \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

• Hence, gradient descent updates the weights in the direction of fastest *decrease*.

Visualization: http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_ regression.pdf#page=21

3

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

- Why gradient descent, if we can find the optimum directly?
 - GD can be applied to a much broader set of models
 - GD can be easier to implement than direct solutions, especially with automatic differentiation software
 - For regression in high-dimensional spaces, GD is more efficient than direct solution (matrix inversion is an $\mathcal{O}(D^3)$ algorithm).

< ロト < 同ト < ヨト < ヨト

Feature mappings

• Suppose we want to model the following data

-Pattern Recognition and Machine Learning, Christopher Bishop.

 One option: fit a low-degree polynomial; this is known as polynomial regression

$$y = w_3 x^3 + w_2 x^2 + w_1 x + w_0$$

Do we need to derive a whole new algorithm?

Feature mappings

- We get polynomial regression for free!
- Define the feature map

$$\phi(x) = \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix}$$

Polynomial regression model:

$$y = \mathbf{w}^{\top} \phi(x)$$

• All of the derivations and algorithms so far in this lecture remain exactly the same!

(本語)と 本語 と 本語 と

-Pattern Recognition and Machine Learning, Christopher Bishop.

<ロ> (日) (日) (日) (日) (日)

24 / 30

$$y = w_0 + w_1 x$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

<ロ> (日) (日) (日) (日) (日)

25 / 30

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

<ロ> (日) (日) (日) (日) (日)

26 / 30

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \ldots + w_9 x^9$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

<ロ> (日) (日) (日) (日) (日)

27 / 30

Generalization

Underfitting : The model is too simple - does not fit the data.

Overfitting : The model is too complex - fits perfectly, does not generalize.

• • = • • = •

Generalization

- We would like our models to generalize to data they haven't seen before
- The degree of the polynomial is an example of a hyperparameter, something we can't include in the training procedure itself
- We can tune hyperparameters using a validation set:

Foreshadowing

- Feature maps aren't a silver bullet:
 - It's not always easy to pick good features.
 - In high dimensions, polynomial expansions can get very large!
- Until the last few years, a large fraction of the effort of building a good machine learning system was feature engineering
- We'll see that neural networks are able to learn nonlinear functions directly, avoiding hand-engineering of features

- 4 回 ト - 4 回 ト