
CS490/590 Lecture 10: Convolutional Networks

1 / 35

Eren Gultepe
Department of Computer Science SIUE

Adapted from Roger Grosse

Overview

What makes vision hard?

Vison needs to be robust to a lot of transformations or distortions:

change in pose/viewpoint
change in illumination
deformation
occlusion (some objects are hidden behind others)

Many object categories can vary wildly in appearance (e.g. chairs)

Geoff Hinton: “Imaging a medical database in which the age of the
patient sometimes hops to the input dimension which normally codes
for weight!”

2 / 35

Overview

Recall we looked at some hidden layer features for classifying handwritten
digits:

This isn’t going to scale to full-sized images.

3 / 35

How do we teach computers vision?

What will you do before this lecture?

MLP

32 input
Wx

activation

--+d �-+ 1 10 � 10 X 3072 3072 weights 10

3

This isn't going to scale to full-sized images.

Overview

Suppose we want to train a network that takes a 200 × 200 RGB image as
input.

1000 hidden units

200

200

3

densely connected

What is the problem with having this as the first layer?

Too many parameters! Input size = 200 × 200 × 3 = 120K.
Parameters = 120K × 1000 = 120 million.

What happens if the object in the image shifts a little?

4 / 35

How do we teach computers vision?

In the fully connected layer, each feature (hidden unit) looks at the entire image.
Since the image is a BIG thing, we end up with lots of parameters.

But, do we really expect to learn a useful feature at the first layer which depends
on pixels that are spatially far away ?
The far away pixels will probably belong to completely different objects (or object
sub-parts). Very little correlation.
We want the incoming weights to focus on local patterns of the input image.

Overview

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

E.g., edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors that are applied at all image locations.

5 / 35

Overview

So far, we’ve seen two types of layers:

fully connected layers

embedding layers (i.e. lookup tables)

Different layers could be stacked together to build powerful models.
Let’s add another layer type: the convolution layer.

6 / 35

Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.

7 / 35

Convolution Layers

Locally connected layers:

Each column of hidden units looks at a small region of the image.

8 / 35

Convolution Layers

Convolution layers:

Tied weights

Each column of hidden units looks at a small region of the image, and the
weights are shared between all image locations.

9 / 35

Going Deeply Convolutional

Convolution layers can be stacked:

Tied weights

10 / 35

Convolution

We’ve already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we’ll introduce a new high-level operation, convolution. Here the
motivation isn’t computational efficiency — we’ll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

Let’s look at the 1-D case first. If a and b are two arrays,

(a ∗ b)t =
∑
τ

aτbt−τ .

Note: indexing conventions are inconsistent. We’ll explain them in each
case.

11 / 35

Convolution

We’ve already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we’ll introduce a new high-level operation, convolution. Here the
motivation isn’t computational efficiency — we’ll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

Let’s look at the 1-D case first. If a and b are two arrays,

(a ∗ b)t =
∑
τ

aτbt−τ .

Note: indexing conventions are inconsistent. We’ll explain them in each
case.

11 / 35

Convolution

Method 1: translate-and-scale

12 / 35

Convolution

Method 2: flip-and-filter

13 / 35

Convolution

Convolution can also be viewed as matrix multiplication:

(2,−1, 1) ∗ (1, 1, 2) =


1
1 1
2 1 1

2 1
2


 2
−1
1



Aside: This is how convolution is typically implemented. (More efficient
than the fast Fourier transform (FFT) for modern conv nets on GPUs!)

14 / 35

Convolution

Some properties of convolution:

Commutativity
a ∗ b = b ∗ a

Linearity
a ∗ (λ1b + λ2c) = λ1a ∗ b + λ2a ∗ c

15 / 35

2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A ∗ B)ij =
∑
s

∑
t

AstBi−s,j−t .

16 / 35

2-D Convolution

Method 1: Translate-and-Scale

17 / 35

2-D Convolution

Method 2: Flip-and-Filter

18 / 35

2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

� 0 1 0
1 4 1

0 1 0

19 / 35

2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

� 0 1 0
1 4 1

0 1 0

19 / 35

Answer: Blur
Note: We call the resulted image as an "activation map" by the kernel.

2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 8 -1

0 -1 0

20 / 35

2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 8 -1

0 -1 0

20 / 35

Answer: Sharpen
Note: We call the resulted image as an "activation map" by the kernel.

2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 4 -1

0 -1 0

21 / 35

2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 4 -1

0 -1 0

21 / 35

Answer: Edge Detection
Note: We call the resulted image as an "activation map" by the kernel.

2-D Convolution

What does this convolution kernel do?

� 1 0 -1
2 0 -2

1 0 -1

22 / 35

2-D Convolution

What does this convolution kernel do?

� 1 0 -1
2 0 -2

1 0 -1

22 / 35

Answer: "Stronger" Edge Detection
Note: We call the resulted image as an "activation map" by the kernel.

Convolutional networks

Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

convolution

Example first-layer filters
826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

(Zeiler and Fergus, 2013, Visualizing and understanding

convolutional networks)

23 / 35

Convolutional networks

Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

convolution

Example first-layer filters
826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

(Zeiler and Fergus, 2013, Visualizing and understanding

convolutional networks)

23 / 35

Convolutional networks

It’s common to apply a linear rectification nonlinearity: yi = max(zi , 0)

convolution linear
rectification

convolution layer

Why might we do this?

Convolution is a linear operation.
Therefore, we need a nonlinearity,
otherwise 2 convolution layers
would be no more powerful than 1.

Two edges in opposite directions
shouldn’t cancel

Makes the gradients sparse, which
helps optimization (recall the
backprop exercise from Lecture 6)

24 / 35

Convolutional networks

It’s common to apply a linear rectification nonlinearity: yi = max(zi , 0)

convolution linear
rectification

convolution layer

Why might we do this?

Convolution is a linear operation.
Therefore, we need a nonlinearity,
otherwise 2 convolution layers
would be no more powerful than 1.

Two edges in opposite directions
shouldn’t cancel

Makes the gradients sparse, which
helps optimization (recall the
backprop exercise from Lecture 6)

24 / 35

Pooling layers

The other type of layer in a pooling layer. These layers reduce the size of
the representation and build in invariance to small transformations.

z1 z2 z3 z4 z5 z6

y1

z7

y2 y3

Most commonly, we use max-pooling, which computes the maximum value
of the units in a pooling group:

yi = max
j in pooling group

zj

25 / 35

Convolutional networks

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer

26 / 35

Convolutional networks

Because of pooling, higher-layer filters can cover a larger region of the input than

equal-sized filters in the lower layers.

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer

27 / 35

Equivariance and Invariance

We said the network’s responses should be robust to translations of the
input. But this can mean two different things.

Convolution layers are equivariant: if you translate the inputs, the
outputs are translated by the same amount.

We’d like the network’s predictions to be invariant: if you translate
the inputs, the prediction should not change.

Pooling layers provide invariance to small translations.

28 / 35

Convolution Layers

Each layer consists of several feature maps, each of which is an array. For
the input layer, the feature maps are usually called channels.

If the input layer represents a grayscale image, it consists of one
channel. If it represents a color image, it consists of three channels.

Each unit is connected to each unit within its receptive field in the
previous layer. This includes all of the previous layer’s feature maps.

29 / 35

Convolution Layers

For simplicity, focus on 1-D signals (e.g. audio waveforms). Suppose the
convolution layer’s input has J feature maps and its output has I feature
maps. Let t index the locations. Suppose the convolution kernels have
radius R, i.e. dimension K = 2R + 1.

Each unit in a convolution layer receives inputs from all the units in its
receptive field in the previous layer:

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j ,τxj ,t+τ .

In terms of convolution,

yi =
∑
j

xj ∗ flip(wi ,j).

30 / 35

Backprop Updates (Optional)

How do we train a conv net? With backprop, of course!

Recall what we need to do. Backprop is a message passing procedure,
where each layer knows how to pass messages backwards through the
computation graph. Let’s determine the updates for convolution layers.

We assume we are given the loss derivatives yi ,t with respect to the
output units.

We need to compute the cost derivatives with respect to the input
units and with respect to the weights.

The only new feature is: how do we do backprop with tied weights?

31 / 35

Backprop Updates (Optional)

Consider the computation graph for the inputs:

Each input unit influences all the output units that have it within their
receptive fields. Using the multivariate Chain Rule, we need to sum
together the derivative terms for all these edges.

32 / 35

Backprop Updates (Optional)

Recall the formula for the convolution layer:

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j ,τxj ,t+τ .

We compute the derivatives, which requires summing over all the outputs
units which have the input unit in their receptive field:

xj ,t =
∑
τ

yi ,t−τ
∂yi ,t−τ
∂xj ,t

=
∑
τ

yi ,t−τ wi ,j ,τ

Written in terms of convolution,

xj = yi ∗wi ,j .

33 / 35

Backprop Updates (Optional)

Consider the computation graph for the weights:

Each of the weights affects all the output units for the corresponding input
and output feature maps.

34 / 35

Backprop Updates (Optional)

Recall the formula for the convolution layer:

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j ,τxj ,t+τ .

We compute the derivatives, which requires summing over all spatial
locations:

wi ,j ,τ =
∑
t

yi ,t
∂yi ,t
∂wi ,j ,τ

=
∑
t

yi ,t xj ,t+τ

35 / 35

