CS490 Lecture 4: Learning a Classifier

Eren Gultepe - SIUE

Adapted from Roger Grosse

Overview

- Last time: binary classification, perceptron algorithm
- Limitations of the perceptron
- no guarantees if data aren't linearly separable
- how to generalize to multiple classes?
- linear model - no obvious generalization to multilayer neural networks
- This lecture: apply the strategy we used for linear regression
- define a model and a cost function
- optimize it using gradient descent

Overview

Design choices so far

- Task: regression, binary classification, multiway classification
- Model/Architecture: linear, log-linear
- Loss function: squared error, 0-1 loss, cross-entropy, hinge loss
- Optimization algorithm: direct solution, gradient descent, perceptron

Overview

- Recall: binary linear classifiers. Targets $t \in\{0,1\}$

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x}+b \\
& y= \begin{cases}1 & \text { if } z \geq 0 \\
0 & \text { if } z<0\end{cases}
\end{aligned}
$$

- Goal from last lecture: classify all training examples correctly
- But what if we can't, or don't want to?
- Seemingly obvious loss function: 0-1 loss

$$
\begin{aligned}
\mathcal{L}_{0-1}(y, t) & = \begin{cases}0 & \text { if } y=t \\
1 & \text { if } y \neq t\end{cases} \\
& =\mathbb{1}_{y \neq t} .
\end{aligned}
$$

Attempt 1: 0-1 loss

- As always, the cost \mathcal{E} is the average loss over training examples; for $0-1$ loss, this is the error rate:

$$
\mathcal{E}=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{y^{(i)} \neq t^{(i)}}
$$

$$
\mathbf{N}
$$

Attempt 1: 0-1 loss

- Problem: how to optimize?
- Chain rule:

$$
\frac{\partial \mathcal{L}_{0-1}}{\partial w_{j}}=\frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_{j}}
$$

Attempt 1: 0-1 loss

- Problem: how to optimize?
- Chain rule:

$$
\frac{\partial \mathcal{L}_{0-1}}{\partial w_{j}}=\frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_{j}}
$$

- But $\partial \mathcal{L}_{0-1} / \partial z$ is zero everywhere it's defined!
- $\partial \mathcal{L}_{0-1} / \partial w_{j}=0$ means that changing the weights by a very small amount probably has no effect on the loss.
- The gradient descent update is a no-op. Almost any point has 0 gradient!

Attempt 2: Linear Regression

- Sometimes we can replace the loss function we care about with one which is easier to optimize. This is known as a surrogate loss function.
- We already know how to fit a linear regression model. Can we use this instead?

$$
\begin{aligned}
y & =\mathbf{w}^{\top} \mathbf{x}+b \\
\mathcal{L}_{\mathrm{SE}}(y, t) & =\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

- Doesn't matter that the targets are actually binary.
- Threshold predictions at $y=1 / 2$.

Attempt 2: Linear Regression

The problem:

- The loss function hates when you make correct predictions with high confidence!
- If $t=1$, it's more unhappy about $y=10$ than $y=0$.

Attempt 3: Logistic Activation Function

- There's obviously no reason to predict values outside $[0,1]$. Let's squash y into this interval.
- The logistic function is a kind of sigmoidal, or S-shaped, function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- A linear model with a logistic nonlinearity is known as log-linear:

$$
\begin{aligned}
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
y & =\sigma(z) \\
\mathcal{L}_{\mathrm{SE}}(y, t) & =\frac{1}{2}(y-t)^{2} .
\end{aligned}
$$

- Used in this way, σ is called an activation function, and z is called the logit.

Attempt 3: Logistic Activation Function

The problem:

(plot of $\mathcal{L}_{\text {SE }}$ as a function of z)

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_{j}} \\
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{L}}{\partial w_{j}}
\end{aligned}
$$

Attempt 3: Logistic Activation Function

The problem:

(plot of $\mathcal{L}_{\mathrm{SE}}$ as a function of z)

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_{j}} \\
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{L}}{\partial w_{j}}
\end{aligned}
$$

- In gradient descent, a small gradient (in magnitude) implies a small step.
- If the prediction is really wrong, shouldn't you take a large step?

Logistic Regression

- Because $y \in[0,1]$, we can interpret it as the estimated probability that $t=1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.

Logistic Regression

- Because $y \in[0,1]$, we can interpret it as the estimated probability that $t=1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- Cross-entropy loss captures this intuition:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(y, t) & = \begin{cases}-\log y & \text { if } t=1 \\
-\log (1-y) & \text { if } t=0\end{cases} \\
& =-t \log y-(1-t) \log (1-y)
\end{aligned}
$$

Logistic Regression

Logistic Regression:

$$
\begin{aligned}
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
y & =\sigma(z) \\
& =\frac{1}{1+e^{-z}} \\
\mathcal{L}_{\mathrm{CE}} & =-t \log y-(1-t) \log (1-y)
\end{aligned}
$$

[[gradient derivation in the notes]]

Logistic Regression

- Problem: what if $t=1$ but you're really confident it's a negative example $(z \ll 0)$?
- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$
\begin{array}{rlr}
y & =\sigma(z) & \Rightarrow y \approx 0 \\
\mathcal{L}_{\mathrm{CE}} & =-t \log y-(1-t) \log (1-y) \quad \Rightarrow \text { computes } \log 0
\end{array}
$$

Logistic Regression

- Problem: what if $t=1$ but you're really confident it's a negative example $(z \ll 0)$?
- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$
\begin{aligned}
y & =\sigma(z) & \Rightarrow y \approx 0 \\
\mathcal{L}_{\mathrm{CE}} & =-t \log y-(1-t) \log (1-y) & \Rightarrow \text { computes } \log 0
\end{aligned}
$$

- Instead, we combine the activation function and the loss into a single logistic-cross-entropy function.

$$
\mathcal{L}_{\mathrm{LCE}}(z, t)=\mathcal{L}_{\mathrm{CE}}(\sigma(z), t)=t \log \left(1+e^{-z}\right)+(1-t) \log \left(1+e^{z}\right)
$$

- Numerically stable computation:

$$
\mathrm{E}=\mathrm{t} * \mathrm{np} \cdot \operatorname{logaddexp}(0,-\mathrm{z})+(1-\mathrm{t}) * \mathrm{np} \cdot \operatorname{logaddexp}(0, \mathrm{z})
$$

Logistic Regression

Comparison of loss functions:

Gradient Descent for Logistic Regression

- How do we minimize the cost \mathcal{J} for logistic regression? No direct solution.
- Taking derivatives of \mathcal{J} w.r.t. w and setting them to 0 doesn't have an explicit solution.
- However, the logistic loss is a convex function in w, so let's consider the gradient descent method from last lecture.
- Recall: we initialize the weights to something reasonable and repeatedly adjust them in the direction of steepest descent.
- A standard initialization is $\mathbf{w}=0$. (why?)

Gradient of Logistic Loss

Back to logistic regression:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(y, t) & =-t \log (y)-(1-t) \log (1-y) \\
y & =1 /\left(1+e^{-z}\right) \text { and } z=\mathbf{w}^{\top} \mathbf{x}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial w_{j}}=\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial w_{j}} & =\left(-\frac{t}{y}+\frac{1-t}{1-y}\right) \cdot y(1-y) \cdot x_{j} \\
& =(y-t) x_{j}
\end{aligned}
$$

(verify this)
Gradient descent (coordinatewise) update to find the weights of logistic regression:

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}} \\
& =w_{j}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

Logistic Regression

Comparison of gradient descent updates:

- Linear regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Logistic regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

Logistic Regression

Comparison of gradient descent updates:

- Linear regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Logistic regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Not a coincidence! These are both examples of matching loss functions, but that's beyond the scope of this course.

Hinge Loss

- Another loss function you might encounter is hinge loss. Here, we take $t \in\{-1,1\}$ rather than $\{0,1\}$.

$$
\mathcal{L}_{\mathrm{H}}(y, t)=\max (0,1-t y)
$$

- This is an upper bound on 0-1 loss (a useful property for a surrogate loss function).
- A linear model with hinge loss is called a support vector machine. You already know enough to derive the gradient descent update rules!
- Very different motivations from logistic regression, but similar behavior in
 practice.

Logistic Regression

Comparison of loss functions:

Multiclass Classification

- What about classification tasks with more than two categories?

$$
\begin{aligned}
& 0001111112 \\
& \partial 22 \alpha 227333 \\
& 3444445555 \\
& 4 \angle 77777888 \\
& 888894999
\end{aligned}
$$

Multiclass Classification

- Targets form a discrete set $\{1, \ldots, K\}$.
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

$$
\mathbf{t}=\underbrace{(0, \ldots, 0,1,0, \ldots, 0)}_{\text {entry } k \text { is } 1}
$$

Multiclass Classification

- Now there are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix \mathbf{W}.
- Also, we have a K-dimensional vector \mathbf{b} of biases.
- Linear predictions:

$$
z_{k}=\sum_{j} w_{k j} x_{j}+b_{k}
$$

- Vectorized:

$$
\mathbf{z}=\mathbf{W} \mathbf{x}+\mathbf{b}
$$

Multiclass Classification

- A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

$$
y_{k}=\operatorname{softmax}\left(z_{1}, \ldots, z_{K}\right)_{k}=\frac{e^{z_{k}}}{\sum_{k^{\prime}} e^{z_{k^{\prime}}}}
$$

- The inputs z_{k} are called the logits.
- Properties:
- Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
- If one of the z_{k} 's is much larger than the others, $\operatorname{softmax}(\mathbf{z})$ is approximately the argmax. (So really it's more like "soft-argmax".)
- Exercise: how does the case of $K=2$ relate to the logistic function?
- Note: sometimes $\sigma(\mathbf{z})$ is used to denote the softmax function; in this class, it will denote the logistic function applied elementwise.

Multiclass Classification

- If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(\mathbf{y}, \mathbf{t}) & =-\sum_{k=1}^{K} t_{k} \log y_{k} \\
& =-\mathbf{t}^{\top}(\log \mathbf{y})
\end{aligned}
$$

where the \log is applied elementwise.

- Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-entropy function.

Multiclass Classification

- Multiclass logistic regression:

$$
\begin{aligned}
\mathbf{z} & =\mathbf{W} \mathbf{x}+\mathbf{b} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{z}) \\
\mathcal{L}_{\mathrm{CE}} & =-\mathbf{t}^{\top}(\log \mathbf{y})
\end{aligned}
$$

- Tutorial: deriving the gradient descent updates

$$
\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial \mathbf{z}}=\mathbf{y}-\mathbf{t}
$$

Convex Functions

- Recall: a set \mathcal{S} is convex if for any $\mathbf{x}_{0}, \mathbf{x}_{1} \in \mathcal{S}$,

$$
(1-\lambda) \mathbf{x}_{0}+\lambda \mathbf{x}_{1} \in \mathcal{S} \quad \text { for } 0 \leq \lambda \leq 1 .
$$

- A function f is convex if for any $\mathbf{x}_{0}, \mathbf{x}_{1}$ in the domain of f,

$$
f\left((1-\lambda) \mathbf{x}_{0}+\lambda \mathbf{x}_{1}\right) \leq(1-\lambda) f\left(\mathbf{x}_{0}\right)+\lambda f\left(\mathbf{x}_{1}\right)
$$

- Equivalently, the set of points lying above the graph of f is convex.
- Intuitively: the function is bowl-shaped.

Convex Functions

- We just saw that the least-squares loss function $\frac{1}{2}(y-t)^{2}$ is convex as a function of y
- For a linear model, $z=\mathbf{w}^{\top} \mathbf{x}+b$ is a linear function of \mathbf{w} and b. If the loss function is convex as a function of z, then it is convex as a function of \mathbf{w} and b.

Convex Functions

Which loss functions are convex?

Convex Functions

Why we care about convexity

- All critical points are minima
- Gradient descent finds the optimal solution (more on this in a later lecture)

Gradient Checking

- We've derived a lot of gradients so far. How do we know if they're correct?
- Recall the definition of the partial derivative:

$$
\frac{\partial}{\partial x_{i}} f\left(x_{1}, \ldots, x_{N}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{N}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{N}\right)}{h}
$$

- Check your derivatives numerically by plugging in a small value of h, e.g. 10^{-10}. This is known as finite differences.

Gradient Checking

- Even better: the two-sided definition

$$
\frac{\partial}{\partial x_{i}} f\left(x_{1}, \ldots, x_{N}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{N}\right)-f\left(x_{1}, \ldots, x_{i}-h, \ldots, x_{N}\right)}{2 h}
$$

Gradient Checking

- Run gradient checks on small, randomly chosen inputs
- Use double precision floats (not the default for most deep learning frameworks!)
- Compute the relative error:

$$
\frac{|a-b|}{|a|+|b|}
$$

- The relative error should be very small, e.g. 10^{-6}

Gradient Checking

- Gradient checking is really important!
- Learning algorithms often appear to work even if the math is wrong.
- But:
- They might work much better if the derivatives are correct.
- Wrong derivatives might lead you on a wild goose chase.
- If you implement derivatives by hand, gradient checking is the single most important thing you need to do to get your algorithm to work well.

