CS490 Lecture 3: Linear Classifiers

Eren Gultepe - SIUE

Adapted from Roger Grosse

Overview

- Classification: predicting a discrete-valued target
- In this lecture, we focus on binary classification: predicting a binary-valued target
- Examples
- predict whether a patient has a disease, given the presence or absence of various symptoms
- classify e-mails as spam or non-spam
- predict whether a financial transaction is fraudulent

Overview

Design choices so far

- Task: regression, classification
- Model/Architecture: linear
- Loss function: squared error
- Optimization algorithm: direct solution, gradient descent, perceptron

Overview

Binary linear classification

- classification: predict a discrete-valued target
- binary: predict a binary target $t \in\{0,1\}$
- Training examples with $t=1$ are called positive examples, and training examples with $t=0$ are called negative examples. Sorry.
- linear: model is a linear function of \mathbf{x}, followed by a threshold:

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x}+b \\
& y= \begin{cases}1 & \text { if } z \geq r \\
0 & \text { if } z<r\end{cases}
\end{aligned}
$$

Some simplifications

Eliminating the threshold

- We can assume WLOG that the threshold $r=0$:

$$
\mathbf{w}^{T} \mathbf{x}+b \geq r \quad \Longleftrightarrow \quad \mathbf{w}^{T} \mathbf{x}+\underbrace{b-r}_{\triangleq b^{\prime}} \geq 0
$$

Some simplifications

Eliminating the threshold

- We can assume WLOG that the threshold $r=0$:

$$
\mathbf{w}^{T} \mathbf{x}+b \geq r \quad \Longleftrightarrow \quad \mathbf{w}^{T} \mathbf{x}+\underbrace{b-r}_{\triangleq b^{\prime}} \geq 0 .
$$

Eliminating the bias

- Add a dummy feature x_{0} which always takes the value 1 . The weight w_{0} is equivalent to a bias.

Some simplifications

Eliminating the threshold

- We can assume WLOG that the threshold $r=0$:

$$
\mathbf{w}^{T} \mathbf{x}+b \geq r \quad \Longleftrightarrow \mathbf{w}^{T} \mathbf{x}+\underbrace{b-r}_{\triangleq b^{\prime}} \geq 0 .
$$

Eliminating the bias

- Add a dummy feature x_{0} which always takes the value 1 . The weight w_{0} is equivalent to a bias.

Simplified model

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x} \\
& y= \begin{cases}1 & \text { if } z \geq 0 \\
0 & \text { if } z<0\end{cases}
\end{aligned}
$$

As a neuron

- This is basically a special case of the neuron-like processing unit from Lecture 1.

- Today's question: what can we do with a single unit?

Examples

NOT

x_{0}	x_{1}	t
1	0	1
1	1	0

Examples

NOT

$$
\begin{array}{rc|c}
x_{0} & x_{1} & t \\
\hline 1 & 0 & 1 \\
1 & 1 & 0 \\
& \\
b+w & >0 \\
b+w
\end{array}
$$

$$
b=1, w=-2
$$

Examples

NOT

$$
\begin{array}{cc|c}
x_{0} & x_{1} & t \\
\hline 1 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

$$
\begin{aligned}
b & >0 \\
b+w & <0
\end{aligned}
$$

Examples

NOT

$$
\begin{array}{rc|c}
x_{0} & x_{1} & \mathrm{t} \\
\hline 1 & 0 & 1 \\
1 & 1 & 0 \\
& \\
b+w & >0 \\
b+w & <0
\end{array}
$$

$$
b=1, w=-2
$$

Examples

AND

x_{0}	x_{1}	x_{2}	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Examples

AND

x_{0}	x_{1}	x_{2}	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
b<0
$$

Examples

AND

x_{0}	x_{1}	x_{2}	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
b & <0 \\
b+w_{2} & <0
\end{aligned}
$$

Examples

AND

x_{0}	x_{1}	x_{2}	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
b & <0 \\
b+w_{2} & <0 \\
b+w_{1} & <0
\end{aligned}
$$

Examples

AND

x_{0}	x_{1}	x_{2}	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
b & <0 \\
b+w_{2} & <0 \\
b+w_{1} & <0 \\
b+w_{1}+w_{2} & >0
\end{aligned}
$$

Examples

AND

$$
\begin{array}{ccc|cr}
x_{0} & x_{1} & x_{2} & t & b<0 \\
\hline 1 & 0 & 0 & 0 & b+w_{2}<0 \\
1 & 0 & 1 & 0 & b+w_{1}<0 \\
1 & 1 & 0 & 0 & b+w_{1}+w_{2}>0 \\
1 & 1 & 1 & 1 & \\
\\
& \\
& \\
&
\end{array}
$$

The Geometric Picture

Recall from linear regression:

The Geometric Picture

Input Space, or Data Space for NOT example

- Training examples are points
- Weights (hypotheses) w can be represented by half-spaces $H_{+}=\left\{\mathbf{x}: \mathbf{w}^{\top} \mathbf{x} \geq 0\right\}, H_{-}=\left\{\mathbf{x}: \mathbf{w}^{\top} \mathbf{x}<0\right\}$
- The boundaries of these half-spaces pass through the origin (why?)
- The boundary is the decision boundary: $\left\{\mathbf{x}: \mathbf{w}^{\top} \mathbf{x}=0\right\}$
- In 2-D, it's a line, but in high dimensions it is a hyperplane
- If the training examples can be perfectly separated by a linear decision rule, we say data is linearly separable.

The Geometric Picture

Weight Space

$$
\begin{aligned}
w_{0} & \geq 0 \\
w_{0}+w_{1} & <0
\end{aligned}
$$

- Weights (hypotheses) w are points
- Each training example \mathbf{x} specifies a half-space \mathbf{w} must lie in to be correctly classified: $\mathbf{w}^{\top} \mathbf{x} \geq 0$ if $t=1$.
- For NOT example:
- $x_{0}=1, x_{1}=0, t=1 \Longrightarrow\left(w_{0}, w_{1}\right) \in\left\{\mathbf{w}: w_{0} \geq 0\right\}$
- $x_{0}=1, x_{1}=1, t=0 \Longrightarrow\left(w_{0}, w_{1}\right) \in\left\{\mathbf{w}: w_{0}+w_{1}<0\right\}$
- The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible, otw it is infeasible.

The Geometric Picture

- The AND example requires three dimensions, including the dummy one.
- To visualize data space and weight space for a 3-D example, we can look at a 2-D slice:

- The visualizations are similar, except that the decision boundaries and the constraints need not pass through the origin.

The Geometric Picture

Visualizations of the AND example

Slice for $x_{0}=1$

Slice for $w_{0}=-1$

What happened to the fourth constraint?

The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

The Perceptron Learning Rule

- Let's mention a classic classification algorithm from the 1950s: the perceptron

- Frank Rosenblatt, with the image sensor (left) of the Mark I Perceptron40

The Perceptron Learning Rule

The idea:

- If $t=1$ and $z=\mathbf{w}^{\top} \mathbf{x}>0$
- then $y=1$, so no need to change anything.

The Perceptron Learning Rule

The idea:

- If $t=1$ and $z=\mathbf{w}^{\top} \mathbf{x}>0$
- then $y=1$, so no need to change anything.
- If $t=1$ and $z<0$
- then $y=0$, so we want to make z larger.

The Perceptron Learning Rule

The idea:

- If $t=1$ and $z=\mathbf{w}^{\top} \mathbf{x}>0$
- then $y=1$, so no need to change anything.
- If $t=1$ and $z<0$
- then $y=0$, so we want to make z larger.
- Update:

$$
\mathbf{w}^{\prime} \leftarrow \mathbf{w}+\mathbf{x}
$$

The Perceptron Learning Rule

The idea:

- If $t=1$ and $z=\mathbf{w}^{\top} \mathbf{x}>0$
- then $y=1$, so no need to change anything.
- If $t=1$ and $z<0$
- then $y=0$, so we want to make z larger.
- Update:

$$
\mathbf{w}^{\prime} \leftarrow \mathbf{w}+\mathbf{x}
$$

- Justification:

$$
\begin{aligned}
\mathbf{w}^{\prime T} \mathbf{x} & =(\mathbf{w}+\mathbf{x})^{T} \mathbf{x} \\
& =\mathbf{w}^{T} \mathbf{x}+\mathbf{x}^{T} \mathbf{x} \\
& =\mathbf{w}^{T} \mathbf{x}+\|\mathbf{x}\|^{2}
\end{aligned}
$$

The Perceptron Learning Rule

For convenience, let targets be $\{-1,1\}$ instead of our usual $\{0,1\}$.

Perceptron Learning Rule:

Repeat:
For each training case $\left(\mathbf{x}^{(i)}, t^{(i)}\right)$,

$$
\left.\begin{array}{l}
z^{(i)} \overleftarrow{\mathbf{w}^{T} \mathbf{x}^{(i)}} \\
\text { If } z^{(i)} t^{(i)} \leq 0, \\
\quad \mathbf{w}
\end{array}\right) \leftarrow \mathbf{w}+t^{(i)} \mathbf{x}^{(i)} \quad .
$$

Stop if the weights were not updated in this epoch.

The Perceptron Learning Rule

Compare:

- SGD for linear regression

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha(y-t) \mathbf{x}
$$

- perceptron

$$
\begin{aligned}
& z \leftarrow \mathbf{w}^{\top} \mathbf{x} \\
& \text { If } z t \leq 0, \\
& \quad \mathbf{w} \leftarrow \mathbf{w}+t \mathbf{x}
\end{aligned}
$$

The Perceptron Learning Rule

- Under certain conditions, if the problem is feasible, the perceptron rule is guaranteed to find a feasible solution after a finite number of steps.
- If the problem is infeasible, all bets are off.
- Stay tuned...
- The perceptron algorithm caused lots of hype in the 1950 s, then people got disillusioned and gave up on neural nets.
- People were discouraged about fundamental limitations of linear classifiers.

Limits of Linear Classification

- Visually, it's obvious that XOR is not linearly separable. But how to show this?

Limits of Linear Classification

Convex Sets

- A set \mathcal{S} is convex if any line segment connecting points in \mathcal{S} lies entirely within \mathcal{S}. Mathematically,

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{S} \quad \Longrightarrow \quad \lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in \mathcal{S} \quad \text { for } 0 \leq \lambda \leq 1 .
$$

- A simple inductive argument shows that for $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathcal{S}$, weighted averages, or convex combinations, lie within the set:

$$
\lambda_{1} \mathbf{x}_{1}+\cdots+\lambda_{N} \mathbf{x}_{N} \in \mathcal{S} \quad \text { for } \lambda_{i}>0, \quad \lambda_{1}+\cdots \lambda_{N}=1
$$

Limits of Linear Classification

Showing that XOR is not linearly separable

- Half-spaces are obviously convex.
- Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space.

- But the intersection can't lie in both half-spaces. Contradiction!

Limits of Linear Classification

A more troubling example

- These images represent 16 -dimensional vectors. White $=0$, black $=1$.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!

Limits of Linear Classification

A more troubling example

- These images represent 16 -dimensional vectors. White $=0$, black $=1$.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!
- Suppose there's a feasible solution. The average of all translations of A is the vector ($0.25,0.25, \ldots, 0.25$). Therefore, this point must be classified as A.
- Similarly, the average of all translations of B is also $(0.25,0.25, \ldots, 0.25)$. Therefore, it must be classified as B. Contradiction!

Limits of Linear Classification

- Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for XOR:

	$\phi(\mathbf{x})=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{1} x_{2}\end{array}\right)$				
x_{1}	x_{2}	$\phi_{1}(\mathbf{x})$	$\phi_{2}(\mathbf{x})$	$\phi_{3}(\mathbf{x})$	t
0	0	0	0	0	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	1	1	1	0

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions. Instead, we'll use neural nets to learn nonlinear hypotheses directly.

