

イロン(部・イヨトイヨン

3

DQA

CS490/590:Lecture 16 Variational Autoencoders

Eren Gultepe SIUE

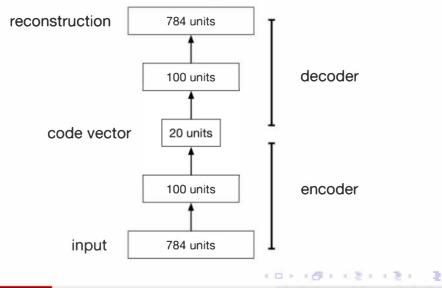
Adapted from Jimmy Ba and Bo Wang

Quiz: Which face image is fake?

С

Autoencoders

- An autoencoder is a feed-forward neural net whose job it is to take an input x and predict x.
- To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than the input.



DOG

Autoencoders

Why autoencoders?

- Map high-dimensional data to two dimensions for visualization
- Compression (i.e. reducing the file size)
 - Note: this requires a VAE, not just an ordinary autoencoder.
- Learn abstract features in an unsupervised way so you can apply them to a supervised task
 - Unlabled data can be much more plentiful than labeled data
- Learn a semantically meaningful representation where you can, e.g., interpolate between different images.

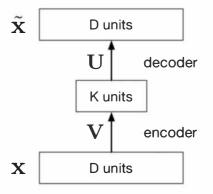
(ロン (問) (注) (注)

Principal Component Analysis (optional)

• The simplest kind of autoencoder has one hidden layer, linear activations, and squared error loss.

$$\mathcal{L}(\mathbf{x}, \mathbf{ ilde{x}}) = \|\mathbf{x} - \mathbf{ ilde{x}}\|^2$$

- This network computes x̃ = UVx, which is a linear function.
- If K ≥ D, we can choose U and V such that UV is the identity. This isn't very interesting.
- But suppose K < D:
 - V maps x to a K-dimensional space, so it's doing dimensionality reduction.
 - The output must lie in a K-dimensional subspace, namely the column space of U.



イロン イボン イネト

SQA

Principal Component Analysis (optional)

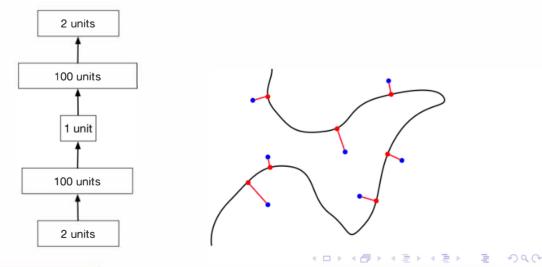
- Review from CSC311: linear autoencoders with squared error loss are equivalent to Principal Component Analysis (PCA).
- Two equivalent formulations:
 - Find the subspace that minimizes the reconstruction error.
 - Find the subspace that maximizes the projected variance.
- The optimal subspace is spanned by the dominant eigenvectors of the empirical covariance matrix.

"Eigenfaces"

・ロン ・行い ステル イティ

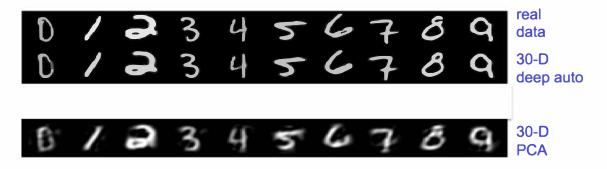
Deep Autoencoders

- Deep nonlinear autoencoders learn to project the data, not onto a subspace, but onto a nonlinear manifold
- This manifold is the image of the decoder.
- This is a kind of nonlinear dimensionality reduction.



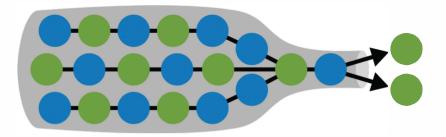
Deep Autoencoders

 Nonlinear autoencoders can learn more powerful codes for a given dimensionality, compared with linear autoencoders (PCA)



Deep Autoencoders

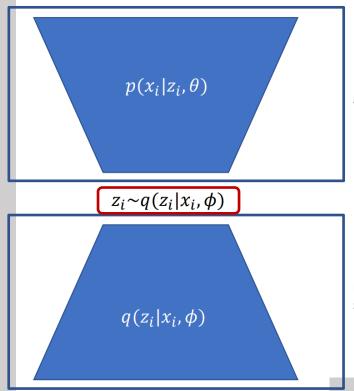
- Some limitations of autoencoders
 - They're not generative models, so they don't define a distribution
 - How to choose the latent dimension?



モロン モ間 たつ(通っ) モ通う

SOR

Variational Auto-encoder (VAE)

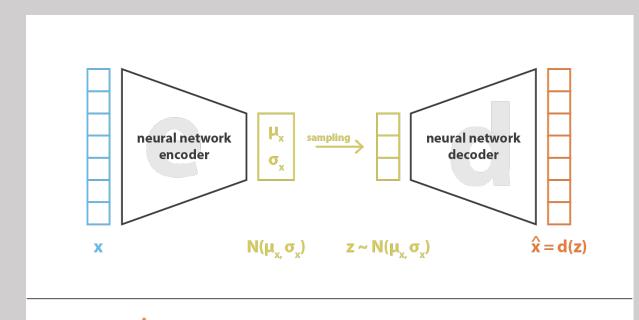


Decoder learns the generative process given the sampled latent vectors.

Sampling process in the middle.

Encoder learns the distribution of latent space given the observations.

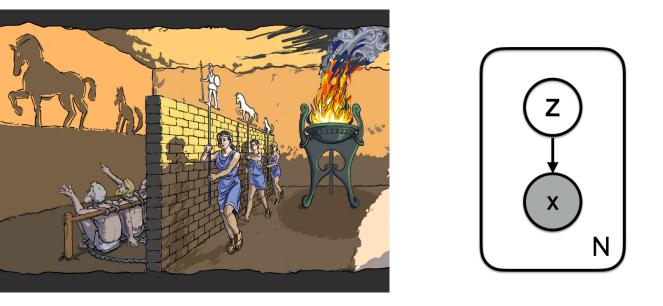
Variational Auto-encoder (VAE)



loss = $||x - \hat{x}||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Observational Model



Source: https://iagtm.pressbooks.com/chapter/story-platos-allegory-of-the-cave/

Observation Model

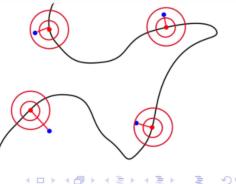
• Consider training a generator network with maximum likelihood.

$$p(\mathbf{x}) = \int p(\mathbf{z}) p(\mathbf{x} \,|\, \mathbf{z}) \, \mathrm{d}\mathbf{z}$$

- One problem: if z is low-dimensional and the decoder is deterministic, then p(x) = 0 almost everywhere!
 - The model only generates samples over a low-dimensional sub-manifold of $\ensuremath{\mathcal{X}}$.
- Solution: define a noisy observation model, e.g.

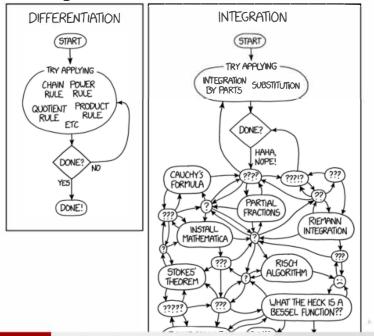
$$p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\mathbf{x}; G_{\theta}(\mathbf{z}), \eta \mathbf{I}),$$

where G_{θ} is the function computed by the decoder with parameters θ .



Observation Model

- At least $p(\mathbf{x}) = \int p(\mathbf{z})p(\mathbf{x} | \mathbf{z}) d\mathbf{z}$ is well-defined, but how can we compute it?
- Integration, according to XKCD:



DQA

Observation Model

- At least $p(\mathbf{x}) = \int p(\mathbf{z})p(\mathbf{x} | \mathbf{z}) d\mathbf{z}$ is well-defined, but how can we compute it?
 - The decoder function $G_{\theta}(\mathbf{z})$ is very complicated, so there's no hope of finding a closed form.
- Instead, we will try to maximize a lower bound on $\log p(\mathbf{x})$.
 - The math is essentially the same as in the EM algorithm from CSC411.

(D) (0) (2) (2) (2) 2

 We obtain the lower bound using Jensen's Inequality: for a convex function h of a random variable X,

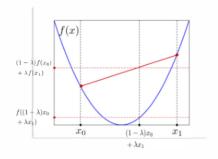
 $\mathbb{E}[h(X)] \ge h(\mathbb{E}[X])$

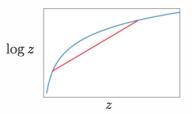
Therefore, if h is concave (i.e. -h is convex),

 $\mathbb{E}[h(X)] \le h(\mathbb{E}[X])$

• The function log *z* is concave. Therefore,

 $\mathbb{E}[\log X] \le \log \mathbb{E}[X]$





· 사람 · · · · 같아 · · ㅋ ㅋ ›

500

- Suppose we have some distribution q(z). (We'll see later where this comes from.)
- We use Jensen's Inequality to obtain the lower bound.

$$\log p(\mathbf{x}) = \log \int p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z}$$

= $\log \int q(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z}$
 $\geq \int q(\mathbf{z}) \log \left[\frac{p(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}|\mathbf{z}) \right] \, \mathrm{d}\mathbf{z}$ (Jensen's Inequality)
= $\mathbb{E}_q \left[\log \frac{p(\mathbf{z})}{q(\mathbf{z})} \right] + \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}) \right]$

SQA

• We'll look at these two terms in turn.

- The first term we'll look at is $\mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}) \right]$
- Since we assumed a Gaussian observation model,

$$\log p(\mathbf{x}|\mathbf{z}) = \log \mathcal{N}(\mathbf{x}; G_{\theta}(\mathbf{z}), \eta \mathbf{I})$$

=
$$\log \left[\frac{1}{(2\pi\eta)^{D/2}} \exp \left(-\frac{1}{2\eta} \|\mathbf{x} - G_{\theta}(\mathbf{z})\|^2 \right) \right]$$

=
$$-\frac{1}{2\eta} \|\mathbf{x} - G_{\theta}(\mathbf{z})\|^2 + \text{const}$$

• So this term is the expected squared error in reconstructing **x** from **z**. We call it the reconstruction term.

(日) (例) (注)((注))

- The second term is $\mathbb{E}_q\left[\log \frac{p(z)}{q(z)}\right]$.
- This is just -D_{KL}(q(z) || p(z)), where D_{KL} is the Kullback-Leibler (KL) divergence

$$\mathbb{D}_{\mathrm{KL}}(q(\mathbf{z}) \| p(\mathbf{z})) riangleq \mathbb{E}_q\left[\log rac{q(\mathbf{z})}{p(\mathbf{z})}
ight]$$

• KL divergence is a widely used measure of distance between probability distributions, though it doesn't satisfy the axioms to be a distance metric.

・ロン・聞き いきの ・ヨン

- More details in tutorial.
- Typically, p(z) = N(0, I). Hence, the KL term encourages q to be close to N(0, I).

 Hence, we're trying to maximize the variational lower bound, or variational free energy:

 $\log p(\mathbf{x}) \geq \mathcal{F}(\boldsymbol{\theta}, q) = \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z})\right] - \mathrm{D}_{\mathrm{KL}}(q \| p).$

- The term "variational" is a historical accident: "variational inference" used to be done using variational calculus, but this isn't how we train VAEs.
- We'd like to choose q to make the bound as tight as possible.
- It's possible to show that the gap is given by:

$$\log p(\mathbf{x}) - \mathcal{F}(\boldsymbol{\theta}, q) = D_{\mathrm{KL}}(q(\mathbf{z}) \| p(\mathbf{z} | \mathbf{x})).$$

(白)(日)(日)(日)(日)

Therefore, we'd like q to be as close as possible to the posterior distribution $p(\mathbf{z}|\mathbf{x})$.

- Let's think about the role of each of the two terms.
- The reconstruction term

$$\mathbb{E}_{q}[\log p(\mathbf{x}|\mathbf{z})] = -\frac{1}{2\sigma^{2}}\mathbb{E}_{q}[\|\mathbf{x} - G_{\theta}(\mathbf{z})\|^{2}] + \text{const}$$

is minimized when q is a point mass on

$$\mathbf{z}_* = \arg\min_{\mathbf{z}} \|\mathbf{x} - \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{z})\|^2.$$

• But a point mass would have infinite KL divergence. (Exercise: check this.) So the KL term forces q to be more spread out.

ロン・ボラン くまとくまと

Reparameterization Trick

- To fit q, let's assign it a parametric form, in particular a Gaussian distribution: q(z) = N(z; μ, Σ), where μ = (μ₁,..., μ_K) and Σ = diag(σ₁²,..., σ_K²).
- In general, it's hard to differentiate through an expectation. But for Gaussian *q*, we can apply the reparameterization trick:

$$\mathbf{z}_i = \mu_i + \sigma_i \epsilon_i,$$

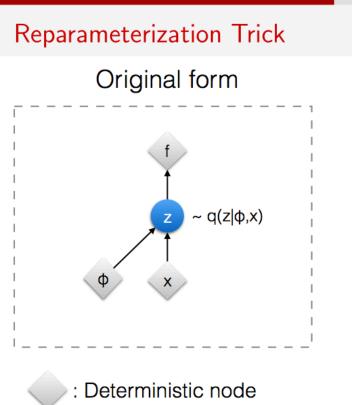
where $\epsilon_i \sim \mathcal{N}(0, 1)$.

Hence,

$$\overline{\mu_i} = \overline{z_i} \qquad \overline{\sigma_i} = \overline{z_i} \epsilon_i.$$

シック・ 川 ・ ・ 川 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・

 This is exactly analogous to how we derived the backprop rules for dropout



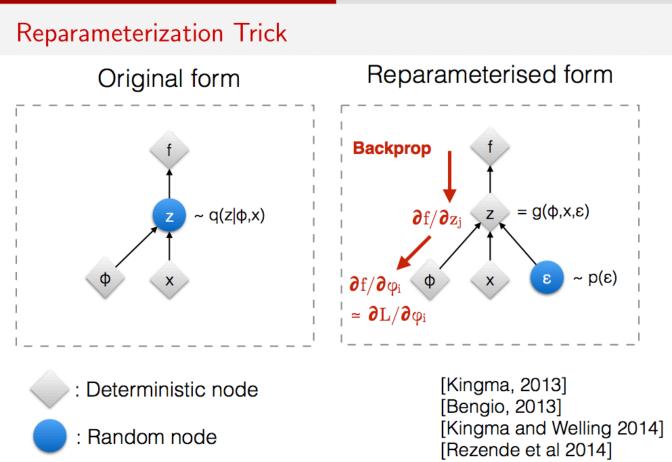
- _ . .
- : Random node

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

• = • • = •

э

DQC



Jimmy Ba and Bo Wang

CSC413/2516 Lecture 10: Generative Model

Amortization

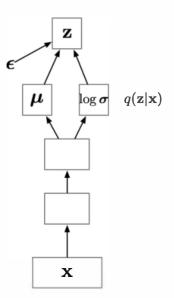
- This suggests one strategy for learning the decoder. For each training example,
 - Fit q to approximate the posterior for the current \mathbf{x} by doing many steps of gradient ascent on \mathcal{F} .

イロン モデン イネン イヨン

- 2 Update the decoder parameters θ with gradient ascent on \mathcal{F} .
- **Problem:** this requires an expensive iterative procedure for every training example, so it will take a long time to process the whole training set.

Amortization

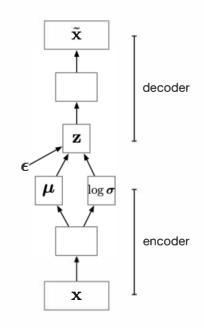
- Idea: amortize the cost of inference by learning an inference network which predicts (μ, Σ) as a function of x.
- The outputs of the inference net are μ and log σ. (The log representation ensures σ > 0.)
- If $\sigma \approx 0$, then this network essentially computes z deterministically, by way of μ .
 - But the KL term encourages σ > 0, so in general z will be noisy.
- The notation q(z|x) emphasizes that q depends on x, even though it's not actually a conditional distribution.



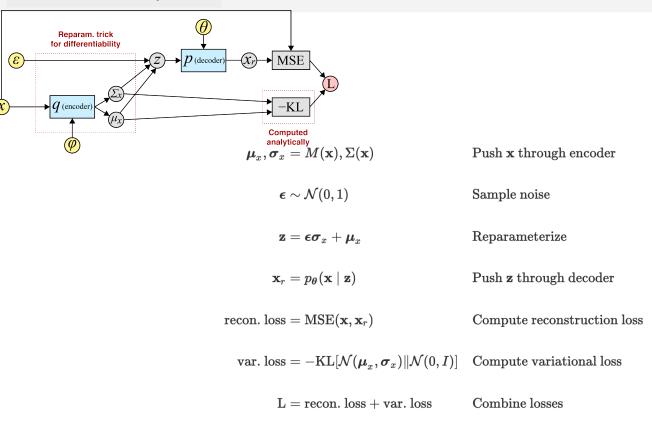
(日) (四) (注) (日)

Amortization

- Combining this with the decoder network, we see the structure closely resembles an ordinary autoencoder. The inference net is like an encoder.
- Hence, this architecture is known as a variational autoencoder (VAE).
- The parameters of both the encoder and decoder networks are updated using a single pass of ordinary backprop.
 - The reconstruction term corresponds to squared error ||x - x̃||², like in an ordinary VAE.
 - The KL term regularizes the representation by encouraging z to be more stochastic.



VAE - Summary



CSC413/2516 Lecture 10: Generative Model

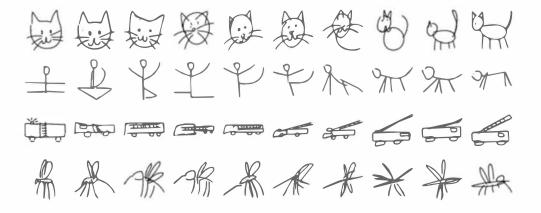
VAEs vs. Other Generative Models

- In short, a VAE is like an autoencoder, except that it's also a generative model (defines a distribution $p(\mathbf{x})$).
- Unlike autoregressive models, generation only requires one forward pass.
- Unlike reversible models, we can fit a low-dimensional latent representation. We'll see we can do interesting things with this...

1日本 の意味 化原料

Latent Space Interpolations

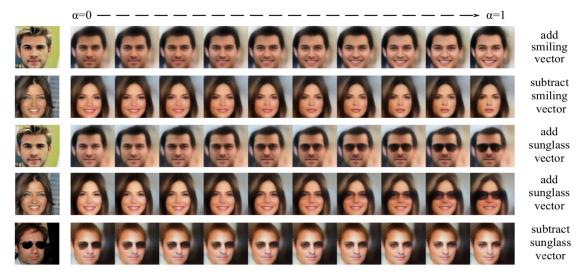
 You can often get interesting results by interpolating between two vectors in the latent space:



Ha and Eck, "A neural representation of sketch drawings"

Latent Space Interpolations

• You can often get interesting results by interpolating between two vectors in the latent space:



https://arxiv.org/pdf/1610.00291.pdf

э

SQA

Latent Space Interpolations

 Latent space interpolation of music: https://magenta.tensorflow.org/music-vae

(ロ) (問) (注)((注))

Trade-offs of Generative Approaches

• In summary:

	Log-likelihood	Sample	Representation	Computation
Autoregressive	Tractable	Good	Poor	O(#pixels)
GANs	Intractable	Good	Good	O(#layers)
Reversible	Tractable	Poor	Poor	O(#layers)
VAEs (optional)	Tractable*	Poor	Good	O(#layers)

• There is no silver bullet in generative modeling.