CS490/590 Lecture 14: Learning Probabilistic Models

Eren Gultepe SIUE

Adapted from: Roger Grosse

Overview

- So far in this course: mainly supervised learning
- Language modeling was our one unsupervised task; we broke it down into a series of prediction tasks
- This was an example of distribution estimation: we'd like to learn a distribution which looks as much as possible like the input data.
- This lecture: basic concepts in probabilistic modeling
- Following two lectures: more recent approaches to unsupervised learning

Maximum Likelihood

- We already used maximum likelihood in this course for training language models. Let's cover it in a bit more generality.
- Motivating example: estimating the parameter of a biased coin
- You flip a coin 100 times. It lands heads $N_{H}=55$ times and tails $N_{T}=45$ times.
- What is the probability it will come up heads if we flip again?
- Model: flips are independent Bernoulli random variables with parameter θ.
- Assume the observations are independent and identically distributed (i.i.d.)

Maximum Likelihood

- The likelihood function is the probability of the observed data, as a function of θ.
- In our case, it's the probability of a particular sequence of H's and T's.
- Under the Bernoulli model with i.i.d. observations,

$$
L(\theta)=p(\mathcal{D})=\theta^{N_{H}}(1-\theta)^{N_{T}}
$$

- This takes very small values (in this case, $\left.L(0.5)=0.5^{100} \approx 7.9 \times 10^{-31}\right)$
- Therefore, we usually work with log-likelihoods:

$$
\ell(\theta)=\log L(\theta)=N_{H} \log \theta+N_{T} \log (1-\theta)
$$

- Here, $\ell(0.5)=\log 0.5^{100}=100 \log 0.5=-69.31$

Maximum Likelihood

$$
N_{H}=55, N_{T}=45
$$

Maximum Likelihood

- Good values of θ should assign high probability to the observed data. This motivates the maximum likelihood criterion.
- Remember how we found the optimal solution to linear regression by setting derivatives to zero? We can do that again for the coin example.

$$
\begin{aligned}
\frac{\mathrm{d} \ell}{\mathrm{~d} \theta} & =\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(N_{H} \log \theta+N_{T} \log (1-\theta)\right) \\
& =\frac{N_{H}}{\theta}-\frac{N_{T}}{1-\theta}
\end{aligned}
$$

- Setting this to zero gives the maximum likelihood estimate:

$$
\hat{\theta}_{\mathrm{ML}}=\frac{N_{H}}{N_{H}+N_{T}}
$$

Maximum Likelihood

- This is equivalent to minimizing cross-entropy. Let $t_{i}=1$ for heads and $t_{i}=0$ for tails.

$$
\begin{aligned}
\mathcal{L}_{C E} & =\sum_{i}-t_{i} \log \theta-\left(1-t_{i}\right) \log (1-\theta) \\
& =-N_{H} \log \theta-N_{T} \log (1-\theta) \\
& =-\ell(\theta)
\end{aligned}
$$

Maximum Likelihood

- Recall the Gaussian, or normal, distribution:
$\mathcal{N}(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
- The Central Limit Theorem says that sums of lots of independent random variables are approximately Gaussian.
- In machine learning, we use

Gaussians a lot because they make
 the calculations easy.

Maximum Likelihood

- Suppose we want to model the distribution of temperatures in Toronto in March, and we've recorded the following observations:

$$
\begin{array}{lllllll}
-2.5 & -9.9 & -12.1 & -8.9 & -6.0 & -4.8 & 2.4
\end{array}
$$

- Assume they're drawn from a Gaussian distribution with known standard deviation $\sigma=5$, and we want to find the mean μ.
- Log-likelihood function:

$$
\begin{aligned}
\ell(\mu) & =\log \prod_{i=1}^{N}\left[\frac{1}{\sqrt{2 \pi} \cdot \sigma} \exp \left(-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2 \pi} \cdot \sigma} \exp \left(-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =\sum_{i=1}^{N} \underbrace{-\frac{1}{2} \log 2 \pi-\log \sigma}_{\text {constant! }}-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Maximum Likelihood

- Maximize the log-likelihood by setting the derivative to zero:

$$
\begin{aligned}
0=\frac{\mathrm{d} \ell}{\mathrm{~d} \mu} & =-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N} \frac{\mathrm{~d}}{\mathrm{~d} \mu}\left(x^{(i)}-\mu\right)^{2} \\
& =\frac{1}{\sigma^{2}} \sum_{i=1}^{N} x^{(i)}-\mu
\end{aligned}
$$

- Solving we get $\mu=\frac{1}{N} \sum_{i=1}^{N} x^{(i)}$
- This is just the mean of the observed values, or the empirical mean.

Maximum Likelihood

- In general, we don't know the true standard deviation σ, but we can solve for it as well.
- Set the partial derivatives to zero, just like in linear regression.

$$
\begin{array}{rlr}
0=\frac{\partial \ell}{\partial \mu} & =-\frac{1}{\sigma^{2}} \sum_{i=1}^{N} x^{(i)}-\mu & \\
0=\frac{\partial \ell}{\partial \sigma} & =\frac{\partial}{\partial \sigma}\left[\sum_{i=1}^{N}-\frac{1}{2} \log 2 \pi-\log \sigma-\frac{1}{2 \sigma^{2}}\left(x^{(i)}-\mu\right)^{2}\right] \quad \hat{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum_{i=1}^{N} x^{(i)} \\
& =\sum_{i=1}^{N}-\frac{1}{2} \frac{\partial}{\partial \sigma} \log 2 \pi-\frac{\partial}{\partial \sigma} \log \sigma-\frac{\partial}{\partial \sigma} \frac{1}{2 \sigma}\left(x^{(i)}-\mu\right)^{2} & \hat{\sigma}_{\mathrm{ML}}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x^{(i)}-\mu\right)^{2}} \\
& =\sum_{i=1}^{N} 0-\frac{1}{\sigma}+\frac{1}{\sigma^{3}}\left(x^{(i)}-\mu\right)^{2} & \\
& =-\frac{N}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{N}\left(x^{(i)}-\mu\right)^{2} &
\end{array}
$$

Maximum Likelihood

- So far, maximum likelihood has told us to use empirical counts or statistics:
- Bernoulli: $\theta=\frac{N_{H}}{N_{H}+N_{T}}$
- Gaussian: $\mu=\frac{1}{N} \sum x^{(i)}, \sigma^{2}=\frac{1}{N} \sum\left(x^{(i)}-\mu\right)^{2}$
- This doesn't always happen; e.g. for the neural language model, there was no closed form, and we needed to use gradient descent.
- But these simple examples are still very useful for thinking about maximum likelihood.

Data Sparsity

- Maximum likelihood has a pitfall: if you have too little data, it can overfit.
- E.g., what if you flip the coin twice and get H both times?

$$
\theta_{\mathrm{ML}}=\frac{N_{H}}{N_{H}+N_{T}}=\frac{2}{2+0}=1
$$

- Because it never observed T, it assigns this outcome probability 0 . This problem is known as data sparsity.
- If you observe a single T in the test set, the likelihood is $-\infty$.

The following slides are just some extra mathematical knowledge parameter estimations

Bayesian Parameter Estimation (optional)

- In maximum likelihood, the observations are treated as random variables, but the parameters are not.
- The Bayesian approach treats the parameters as random variables as well.
- To define a Bayesian model, we need to specify two distributions:
- The prior distribution $p(\boldsymbol{\theta})$, which encodes our beliefs about the parameters before we observe the data
- The likelihood $p(\mathcal{D} \mid \boldsymbol{\theta})$, same as in maximum likelihood
- When we update our beliefs based on the observations, we compute the posterior distribution using Bayes' Rule:

$$
p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{\int p\left(\boldsymbol{\theta}^{\prime}\right) p\left(\mathcal{D} \mid \boldsymbol{\theta}^{\prime}\right) \mathrm{d} \boldsymbol{\theta}^{\prime}}
$$

- We rarely ever compute the denominator explicitly.

Bayesian Parameter Estimation (optional)

- Let's revisit the coin example. We already know the likelihood:

$$
L(\theta)=p(\mathcal{D})=\theta^{N_{H}}(1-\theta)^{N_{T}}
$$

- It remains to specify the prior $p(\theta)$.
- We can choose an uninformative prior, which assumes as little as possible. A reasonable choice is the uniform prior.
- But our experience tells us 0.5 is more likely than 0.99 . One particularly useful prior that lets us specify this is the beta distribution:

$$
p(\theta ; a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} .
$$

- This notation for proportionality lets us ignore the normalization constant:

$$
p(\theta ; a, b) \propto \theta^{a-1}(1-\theta)^{b-1}
$$

Bayesian Parameter Estimation (optional)

- Beta distribution for various values of a, b :

- Some observations:
- The expectation $\mathbb{E}[\theta]=a /(a+b)$.
- The distribution gets more peaked when a and b are large.
- The uniform distribution is the special case where $a=b=1$.
- The main thing the beta distribution is used for is as a prior for the Bernoulli distribution.

Bayesian Parameter Estimation (optional)

- Computing the posterior distribution:

$$
\begin{aligned}
p(\boldsymbol{\theta} \mid \mathcal{D}) & \propto p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta}) \\
& \propto\left[\theta^{a-1}(1-\theta)^{b-1}\right]\left[\theta^{N_{H}}(1-\theta)^{N_{T}}\right] \\
& =\theta^{a-1+N_{H}}(1-\theta)^{b-1+N_{T}} .
\end{aligned}
$$

- This is just a beta distribution with parameters $N_{H}+a$ and $N_{T}+b$.
- The posterior expectation of θ is:

$$
\mathbb{E}[\theta \mid \mathcal{D}]=\frac{N_{H}+a}{N_{H}+N_{T}+a+b}
$$

- The parameters a and b of the prior can be thought of as pseudo-counts.
- The reason this works is that the prior and likelihood have the same functional form. This phenomenon is known as conjugacy, and it's very useful.

Bayesian Parameter Estimation (optional)

Bayesian inference for the coin flip example:

Small data setting
$N_{H}=2, N_{T}=0$

Large data setting
$N_{H}=55, N_{T}=45$

When you have enough observations, the data overwhelm the prior.

Bayesian Parameter Estimation (optional)

- What do we actually do with the posterior?
- The posterior predictive distribution is the distribution over future observables given the past observations. We compute this by marginalizing out the parameter(s):

$$
\begin{equation*}
p\left(\mathcal{D}^{\prime} \mid \mathcal{D}\right)=\int p(\boldsymbol{\theta} \mid \mathcal{D}) p\left(\mathcal{D}^{\prime} \mid \boldsymbol{\theta}\right) \mathrm{d} \boldsymbol{\theta} \tag{1}
\end{equation*}
$$

- For the coin flip example:

$$
\begin{align*}
\theta_{\text {pred }} & =\operatorname{Pr}\left(x^{\prime}=H \mid \mathcal{D}\right) \\
& =\int p(\theta \mid \mathcal{D}) \operatorname{Pr}\left(x^{\prime}=H \mid \theta\right) \mathrm{d} \theta \\
& =\int \operatorname{Beta}\left(\theta ; N_{H}+a, N_{T}+b\right) \cdot \theta \mathrm{d} \theta \\
& =\mathbb{E}_{\text {Beta }\left(\theta ; N_{H}+a, N_{T}+b\right)}[\theta] \\
& =\frac{N_{H}+a}{N_{H}+N_{T}+a+b}, \tag{2}
\end{align*}
$$

Bayesian Parameter Estimation (optional)

Bayesian estimation of the mean temperature in Toronto

- Assume observations are i.i.d. Gaussian with known standard deviation σ and unknown mean μ
- Broad Gaussian prior over μ, centered at 0
- We can compute the posterior and posterior predictive distributions analytically (full derivation in notes)
- Why is the posterior predictive distribution more spread out than
 the posterior distribution?

Bayesian Parameter Estimation (optional)

Comparison of maximum likelihood and Bayesian parameter estimation

- The Bayesian approach deals better with data sparsity
- Maximum likelihood is an optimization problem, while Bayesian parameter estimation is an integration problem
- This means maximum likelihood is much easier in practice, since we can just do gradient descent
- Automatic differentiation packages make it really easy to compute gradients
- There aren't any comparable black-box tools for Bayesian parameter estimation (although Stan can do quite a lot)

Maximum A-Posteriori Estimation (optional)

- Maximum a-posteriori (MAP) estimation: find the most likely parameter settings under the posterior
- This converts the Bayesian parameter estimation problem into a maximization problem

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}_{\mathrm{MAP}} & =\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathcal{D}) \\
& =\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{\theta}, \mathcal{D}) \\
& =\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta}) \\
& =\arg \max _{\boldsymbol{\theta}} \log p(\boldsymbol{\theta})+\log p(\mathcal{D} \mid \boldsymbol{\theta})
\end{aligned}
$$

Maximum A-Posteriori Estimation (optional)

- Joint probability in the coin flip example:

$$
\begin{aligned}
\log p(\theta, \mathcal{D}) & =\log p(\theta)+\log p(\mathcal{D} \mid \theta) \\
& =\mathrm{const}+(a-1) \log \theta+(b-1) \log (1-\theta)+N_{H} \log \theta+N_{T} \log (1-\theta) \\
& =\mathrm{const}+\left(N_{H}+a-1\right) \log \theta+\left(N_{T}+b-1\right) \log (1-\theta)
\end{aligned}
$$

- Maximize by finding a critical point

$$
0=\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p(\theta, \mathcal{D})=\frac{N_{H}+a-1}{\theta}-\frac{N_{T}+b-1}{1-\theta}
$$

- Solving for θ,

$$
\hat{\theta}_{\mathrm{MAP}}=\frac{N_{H}+a-1}{N_{H}+N_{T}+a+b-2}
$$

Maximum A-Posteriori Estimation (optional)

Comparison of estimates in the coin flip example:
Formula $\quad N_{H}=2, N_{T}=0 \quad N_{H}=55, N_{T}=45$

$$
\begin{array}{rc}
\hat{\theta}_{\mathrm{ML}} & \frac{N_{H}}{N_{H}+N_{T}} \\
\theta_{\text {pred }} & \frac{N_{H}+a}{N_{H}+N_{T}+a+b} \\
\hat{\theta}_{\mathrm{MAP}} & \frac{N_{H}+a-1}{N_{H}+N_{T}+a+b-2}
\end{array}
$$

$$
\begin{array}{r}
1 \\
\frac{4}{6} \approx 0.67 \\
\frac{3}{4}=0.75
\end{array}
$$

$$
\frac{55}{100}=0.55
$$

$$
\frac{4}{6} \approx 0.67 \quad \frac{57}{104} \approx 0.548
$$

$$
\frac{56}{102} \approx 0.549
$$

$\hat{\theta}_{\text {MAP }}$ assigns nonzero probabilities as long as $a, b>1$.

Maximum A-Posteriori Estimation (optional)

Comparison of predictions in the Toronto temperatures example

7 observations

