Introduction to
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Q1. MDPs: Value Iteration

An agent lives in gridworld G consisting of grid cells s € S, and is not allowed to move into the cells colored
black. In this gridworld, the agent can take actions to move to neighboring squares, when it is not on a numbered
square. When the agent is on a numbered square, it is forced to exit to a terminal state (where it remains),
collecting a reward equal to the number written on the square in the process.

Gridworld G

+10 +1

You decide to run value iteration for gridworld G. The value function at iteration k is Vi (s). The initial value
for all grid cells is 0 (that is, Vj(s) = 0 for all s € S). When answering questions about iteration k for Vi(s) ,
either answer with a finite integer or co. For all questions, the discount factor is v = 1.

(a) Consider running value iteration in gridworld G. Assume all legal movement actions will always succeed
(and so the state transition function is deterministic).

(i) What is the smallest iteration k for which Vj(A) > 0?7 For this smallest iteration k, what is the value
Vi(A)?

k= 3 Vi(A) = 10
The nearest reward is 10, which is 3 steps away. Because v = 1, there is no decay in the reward, so
the value propagated is 10.

(ii) What is the smallest iteration & for which Vi (B) > 07 For this smallest iteration k, what is the value
Vi(B)?
k= 3 Vi(B) = 1
The nearest reward is 1, which is 3 steps away. Because v = 1, there is no decay in the reward, so
the value propagated is 1.

(iii) What is the smallest iteration k for which V4, (A) = V*(A)? What is the value of V*(A)?
k= 3 V*(A) = 10
Because v = 1, the problem reduces to finding the distance to the highest reward (because there is
no living reward). The highest reward is 10, which is 3 steps away.

(iv) What is the smallest iteration k for which V;(B) = V*(B)? What is the value of V*(B)?

k=__ 6 VE(B)=___ 10



(b)

Because v = 1, the problem reduces to finding the distance to the highest reward (because there is no
living reward). The highest reward is 10, which is 6 steps away.

Now assume all legal movement actions succeed with probability 0.8; with probability 0.2, the action
fails and the agent remains in the same state.

Consider running value iteration in gridworld G. What is the smallest iteration & for which V4 (A) =
V*(A)? What is the value of V*(A4)?

k= 00
V*(A) = 10

Because v = 1 and the only rewards are in the exit states, the optimal policy will move to the exit state
with highest reward. This is guaranteed to ultimately succeed, so the optimal value of state A is 10.
However, because the transition is non-deterministic, it’s not guaranteed this reward can be collected in 3
steps. It could any number of steps from 3 through infinity, and the values will only have converged after
infinitely many iterations.



Q2. MDP: Blackjack

There’s a new gambling game popping up in Vegas! It’s similar to blackjack, but it’s played with a single die.
(CS188 staff is interested in winning a small fortune, so we’ve hired you to take a look at the game!

We will treat the game as an MDP. The game has states 0,1,....8, corresponding to dollar amounts, and a Done
state where the game ends. The player starts with $2, i.e. at state 2. The player has two actions: Stop and
Roll, and is forced to take the Stop action at states 0,1,and 8.

When the player takes the Stop action, they transition to the Done state and receive reward equal to the amount
of dollars of the state they transitioned from: e.g. taking the stop action at state 3 gives the player $3. The
game ends when the player transitions to Done.

The Roll action is available from states 2-7. The player rolls a biased 6-sided die that will land on 1, 2, 3, or 4
with % probability each and 5 or 6 with probability % each.

If the player Rolls from state s and the die lands on outcome o, the player transitions to state s + o — 2, as long
as s+ 0 —2 < 8 (s is the amount of dollars of the current state, o is the amount rolled, and the negative 2 is
the price to roll). If s + 0 — 2 > 8, the player busts, i.e. transitions to Done and does NOT receive reward.

(a) In solving this problem, you consider using policy iteration. Your initial policy 7 is in the table below.
Evaluate the policy at each state, with v = 1. Note that the action at state 0, 1, 8 is fixed into the rule,
so we will not consider those states in the update. (Hint: how does the bias in the die affect this?)

State 2 3 4 5 6 7
w(s) Roll Roll Stop Stop Stop Stop
yris) 14/3 17/3 4 5 6 7

We can write a system of equations to solve for the value of being in states 2 and 3. First, we find that
the value of being in state 2 is: V(2) = tV(1) + §V(2) + §V(3) + $V(4) + 2V(5) + 2V(6). Plugging
in the values of stopping at states 4, 5, and 6, we find that 7V (2) = V(3) + 27. Similarly, for state 3:
V(3)=1V(2)+ sV (3)+ sV(4) + sV (5) + 2V (6) + 2V/(7). This simplifies to 7V (3) = V/(2) + 35. Solving

this system of equations gives V(2) = Ll and V/(3) = 1.

G

(b) Deciding against the previous policy, you come up with a simpler policy 79 as shown below, to start
with. Perform one iteration of Policy Iteration (i.e. policy evaluation followed by policy improvement) to
find the new policy 7(1). In this part as well, we have v = 1.

In the table below, R stands for Roll and S stands for Stop. Select both R and S if both actions are equally
preferred.



(c)

(d)

State 2 3 4 5 6 7
7 (s) Stop Stop Stop Stop Stop Stop
W | MRrROs | MrOs | MrOs | OrMWs | OrMs | UOrR Ms

We compare the values obtained by either rolling or stopping. Stopping in a state ¢ yields a value of 1.
The value of rolling will be an expectation over the value of the states we could land in. At each state,
we take the action that yields the highest reward.

Note: we accept both "R only” and "R and S” for state 4. If we don’t consider 8 as a state, "R and S” is
the correct answer; if we consider 8 as a state, "R” is the correct answer

Suppose you start with a initial policy 7y that is the opposite of the optimal policy (which means if
7*(s) = Roll, my(s) = Stop, and vice versa). Your friend Alice claims that the Policy Iteration Algorithm
can still find the optimal policy in this specific scenario. Is Alice right?

@ Alice is right, because Policy Iteration can find the optimal policy regardless of initial policy.

(O Alice is right, but not for the reason above.

(O Alice is wrong, because a very bad initial policy can block the algorithm from exploring the optimal
actions.

(O Alice is wrong, but not for the reason above.

Suppose you want to try a different approach, and implement a value iteration program to find the
optimal policy for this new game. Your friend Bob claims that Vi(s) has to converge to V*(s) for all
states before the program declares it has found the optimal policy. Is Bob right?

(O Bob is right, because Vj(s) always converge to V*(s) for all states when the optimal policy . is
found.

(O Bobis right, but not for the reason above.

(O Bob is wrong, because we cannot use value iteration to find the optimal policy.

@ Bob is wrong, but not for the reason above

Note that the policy extracted from value iteration can converge to the optimal policy long before the
values themselves converge. (We gave an example of this in class.)

However, based on the unclear wording, choice 2 was technically the most correct answer (both choice 2
and 4 will receive full credit). This is because the value iteration algorithm has no general way of detecting
if the policy has converged to the optimal policy, except insofar as the values have converged.

One common misunderstanding is that the policy has converged to the optimal policy if we see mp =
Tk41 = -+ - = T for some large T. This is actually not the case.

For example, consider the following 2-state MDP, where T is a positive integer and 0 < v < 1:

t4+1

We have Q*(sg,a) = =2

1—y

, Q*(s0,0) = ﬁ So m*(sg) = b.




After k value iteration steps, Vi(s2) = 1+y++2+---+4F "1 = L" S the Q@ value of b extracted after

1=y
k value iteration steps is Q(s0,b) = 1+~Vi(s2) = 1_1_:“ . For k <T, we have Qk(so,a) > Qr(s0,b) This
means that, if we tiebreak actions alphabetically, we will have myp = 7 = -- - = mp. However, for k > T, we

have Qg (s0,a) < Qr(so,b), and therefore mp # mpry1. So in general, observing that the extracted policy
has remained the same for many timesteps does not allow you to infer that the policy has converged to
the optimal policy.



Q3. RL: Blackjack, Redux

After playing the Blackjack game in Q3 a few times with the optimal policy you found in the previous problem,
you find that you’re doing worse than expected! (Hint: you may want to do Q3 before attempting this problem.)
In fact, you are beginning to suspect that the Casino was not honest about the probabilities of dice’s outcome.
Seeing no better option, you decided to do some good old fashioned reinforcement learning (RL).

(a) First, you need to decide what RL algorithm to use.

(i) Suppose you had a policy m and wanted to find the value V™ of each of the states under this policy.
Which algorithms are appropriate for performing this calculation? Note that we do not know the
transition probabilities, and we don’t have sufficient samples to approximate them.

[ Value Iteration [] Policy Iteration ] Q-learning M Direct Evaluation Temporal
difference learning

We cannot use Value Iteration or Policy Iteration because we don’t have the transition probabilities.
In addition, we cannot use Q-learning, because it estimates the value of the optimal policy.

(ii) Being prudent with your money, you decide to begin with observing what happens when other people
randomly play the blackjack game. Which of the following algorithms can recover the optimal policy
given this play data?

[J Value Iteration [J Policy Iteration [ | Q-learning U] Direct Evaluation [ Temporal
difference learning

Q-learning estimates the value of the optimal policy, even given data generated from a random policy.

(b) You decide to use Q-learning to play this game.

(i) Suppose your initial policy is mo. Which of the following is the update performed by Q-learning with
learning rate a, upon getting reward R(s,a,s’) and transitioning to state s’ after taking action a in
state s?7

® Qi i(s,0) = (1 -0a)Qx(s,a) + a(R(s,a,s") +ymax, Qr(s",a’))

O Quaals,a) = (1~ )Qu(s,0) + alR(s,a.5) +1Qu(s' mo(s)

O Viga(s) = (1 = ) Vi(s) + a(R(s, a,8") +ymaxgr Vi(s"))
Vies = (1= a)Vi + a(R(s,a,5') + 1Vi(s")

(ii) As with the previous problem, denote a policy at any time-step k as 7 (and 7 (a|s) means the
probability of taking action a at state), and the Q values at that timestep as Q. In the limit of
infinite episodes, which of these policies will always do each action in each state an infinite amount

of times?
B 7, (Roll|s) = m,(Stop|s) = i
W ras)=1- § if a == argmax, Qx(s, a) else §

U 7 (Roll|s) = 1, 71 (Stop|s) = 0
B 7. (Roll|s) = ., me(Stopls) = 2
(O None of the above

(iii) Suppose you decide to use an exploration function f(s’,a’), used in-place of Q(s’, a’) in the Q-learning
update. Which of the following choices of an exploration functions encourage you to take actions you
haven’t taken much before? (Recall that N(s,a) is the number of times the g-state (s,a) has been
visited, assuming every (s, a) has been visited at least once.)

(] f(s,a) = Q(s,a)
U f(s,a) = Q(s,a) + N(s,a)
U f(s,a) = max, Q(s,a)



[ | f(s,a) Q(s,a)—&-%, where k > 0
B f(s,0) = Qs.0) + /T Mo
W f(s.0) =yl

(O None of the above



(iv) Suppose you start with the following Q-value table:

)

(vi)

State

[=p)

Q(State, Roll)

o

ot

w

=

[\)

Q(State, Stop) | 2 |3 4|5 |6 |7

After you observe the trajectory
(s =2,a=Roll,s" =4,7=0),(s =4,a=Roll,s' =7,r=0),(s =7,a = Stop, s’ = Done,r =1T7)

What are the resulting Q-values after running one pass of Q-learning over the given trajectory?
Suppose discount rate v = 1, and learning rate o = 0.5.

State 2 3 4 5 6 7
Q(State, Roll) 2.5 0 6 3 4 2
Q(State, Stop) 2 3 4 5 6 7

We only update the Q-values for state, action pairs we observe. So only Q(2, R),Q(4, R),Q(7,5) are
changed. By performing the bellman backups, we get:

sample(2, Roll,4) =0+ 1% (5) =5 Q'(2,R) =0.5(0) + 0.5(5) = 2.5
sample(4, Roll,7) =0+ 1x(7) =7  Q'(4,R) =0.5(5) +0.5(7) = 6
sample(7, Stop, Done) =7+ 1% (0) =7 Q'(7,5) =0.5(7)+0.5(7) =7

One of the other gamblers looks over your shoulder as you perform Q-learning, and tells you that
you’re learning too slowly. ”You should use a learning rate of a = 17, they suggest.

If you use constant o = 1, is Q-learning guaranteed to eventually converge to the optimal policy,
assuming you observe every state, action pair an infinite amount of times? O Yes @ No

With a = 1, your estimate of @) values is simply the latest sample. This means that the greedy policy
flip flops depending on your latest observation. For example, if you observe (s = 5,a = Roll, s’ =
8,7 = 0), you will have Q(5,Roll) = 8, causing the greedy policy with respect to the Q-values
to be 7%Geedy(5) = Roll. However, you might then observe (s = 5,a = Roll,s’ = Done,r = 0),
therefore giving you Q(5, Roll) = 0. This causes the greedy policy with respect to the Q-values to be
mGreedy (5) = Stop.

So your policy is not guaranteed to converge.

If you continue with constant a = 0.5, is Q-learning guaranteed to eventually converge to the optimal
policy, assuming you observe every state, action pair an infinite amount of times? () Yes @ No
With a = 0.5, your estimate of ) values is highly influenced by your latest samples. This means that
the greedy policy might flip-flop depending on your latest observations.

For example, after observing enough transitions, we’ll have (s, Stop) € [s — 0.2, s + 0.2] and have
Q(s,Roll) <10 for all s.

If you observe 2 transitions of (s = 5,a = Roll, s’ = 8,7 = 0), you will have Q(5,Roll) > 2(7.8) +
i(—0.2) = 5.8 > 5.2 > Q(5,Stop), causing the greedy policy with respect to the Q-values to be
WG"eedy(E)) = Roll. However, you might then observe 2 transitions of (s = 5,a = Roll, s’ = Done,r =
0), therefore giving you Q(5,Roll) < 204 110 < 2.5 < 4.8 < Q(5,Stop). This causes the greedy
policy with respect to the Q-values to be 76T (5) = Stop.

So your policy is not guaranteed to converge.



