
Introduction to
Artificial Intelligence    Review HMMs
Q1. HMMs
Consider a process where there are transitions among a finite set of states s1, · · · , sk over time steps i = 1, · · · , N .
Let the random variables X1, · · · , XN represent the state of the system at each time step and be generated as
follows:

• Sample the initial state s from an initial distribution P1(X1), and set i = 1

• Repeat the following:

1. Sample a duration d from a duration distribution PD over the integers {1, · · · ,M}, where M is the
maximum duration.

2. Remain in the current state s for the next d time steps, i.e., set

xi = xi+1 = · · · = xi+d−1 = s (1)

3. Sample a successor state s′ from a transition distribution PT (Xt|Xt−1 = s) over the other states
s′ 6= s (so there are no self transitions)

4. Assign i = i + d and s = s′.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s1, s2, s3 are different, what is the probability of the sample sequence
s1, s1, s2, s2, s2, s3, s3? Write an algebraic expression. Assume M ≥ 3.

At each time step i we observe a noisy version of the state Xi that we denote Yi and is produced via a conditional
distribution PE(Yi|Xi).

(b) Only in this subquestion assume that N > M . Let X1, · · · , XN and Y1, · · · , YN random variables defined
as above. What is the maximum index i ≤ N − 1 so that X1 ⊥⊥ XN |Xi, Xi+1, · · · , XN−1 is guaranteed?

(c) Only in this subquestion, assume the max duration M = 2, and PD uniform over {1, 2} and each xi is
in an alphabet {a, b}. For (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5) draw a Bayes Net over these 10 random
variables with the property that removing any of the edges would yield a Bayes net inconsistent with the
given distribution.
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(d) In this part we will explore how to write the described process as an HMM with an extended state space.
Write the states z = (s, t) where s is a state of the original system and t represents the time elapsed in that
state. For example, the state sequence s1, s1, s1, s2, s3, s3 would be represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2).

Answer all of the following in terms of the parameters P1(X1), PD(d), PT (Xj+1|Xj), PE(Yi|Xi), k (total
number of possible states), N and M (max duration).

(i) What is P (Z1)?

P (x1, t1) =

(ii) What is P (Zi+1|Zi)? Hint: You will need to break this into cases where the transition function will
behave differently.

P (Xi+1, ti+1 | Xi, ti) =

(iii) What is P (Yi|Zi)?

P (Yi | Xi, ti) =
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(e) In this question we explore how to write an algorithm to compute P (XN |y1, · · · , yN ) using the particular
structure of this process.

Write P (Xt|y1, · · · , yt−1) in terms of other factors. Construct an answer by checking the correct boxes
below:

P (Xt|y1, · · · , yt−1) = (i) (ii) (iii)

(i) # ∑k
i=1

∑M
d=1

∑M
d′=1

# ∑k
i=1

∑M
d=1

# ∑k
i=1

# ∑M
d=1

(ii) # P (Zt = (Xt, d)|Zt−1 = (si, d))

# P (Xt|Xt−1 = si)

# P (Xt|Xt−1 = sd)

# P (Zt = (Xt, d
′)|Zt−1 = (si, d))

(iii) # P (Zt−1 = (sd, i)|y1, · · · , yt−1)

# P (Xt−1 = sd|y1, · · · , yt−1)

# P (Zt−1 = (si, d)|y1, · · · , yt−1)

# P (Xt−1 = si|y1, · · · , yt−1)
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Q2. Planning ahead with HMMs

Pacman is tired of using HMMs to
estimate the location of ghosts. He
wants to use HMMs to plan what ac-
tions to take in order to maximize
his utility. Pacman uses the HMM
(drawn to the right) of length T to
model the planning problem. In the
HMM, X1:T is the sequence of hidden
states of Pacman’s world, A1:T are ac-
tions Pacman can take, and Ut is the
utility Pacman receives at the particu-
lar hidden state Xt. Notice that there
are no evidence variables, and utilities
are not discounted.

. . . Xt−1 Xt Xt+1 . . .

. . . Ut−1 Ut Ut+1

At−1 At At+1

. . .

. . .. . .

(a) The belief at time t is defined as Bt(Xt) = p(Xt|a1:t). The forward algorithm update has the following
form:

Bt(Xt) = (i) (ii) Bt−1(xt−1).

Complete the expression by choosing the option that fills in each blank.

(i) # maxxt−1
# ∑

xt−1
# maxxt

# ∑
xt

# 1

(ii) # p(Xt|xt−1) # p(Xt|xt−1)p(Xt|at) # p(Xt) # p(Xt|xt−1, at) # 1

# None of the above combinations is correct

(b) Pacman would like to take actions A1:T that maximizes the expected sum of utilities, which has the
following form:

MEU1:T = (i) (ii) (iii) (iv) (v)

Complete the expression by choosing the option that fills in each blank.

(i) # maxa1:T
# maxaT

# ∑
a1:T

# ∑
aT

# 1

(ii) # maxt # ∏T
t=1 # ∑T

t=1 # mint # 1

(iii) # ∑
xt,at

# ∑
xt

# ∑
at

# ∑
xT

# 1

(iv) # p(xt|xt−1, at) # p(xt) # Bt(xt) # BT (xT ) # 1

(v) # UT # 1
Ut

# 1
UT

# Ut # 1

# None of the above combinations is correct

(c) A greedy ghost now offers to tell Pacman the values of some of the hidden states. Pacman needs your
help to figure out if the ghost’s information is useful. Assume that the transition function p(xt|xt−1, at)
is not deterministic. With respect to the utility Ut, mark all that can be True:

� VPI(Xt−1|Xt−2) > 0 � VPI(Xt−2|Xt−1) > 0 � VPI(Xt−1|Xt−2) = 0 � VPI(Xt−2|Xt−1) =

0 � None of the above

(d) Pacman notices that calculating the beliefs under this model is very slow using exact inference. He
therefore decides to try out various particle filter methods to speed up inference. Order the following
methods by how accurate their estimate of BT (XT ) is? If different methods give an equivalently accurate
estimate, mark them as the same number.
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Most
accurate

Least
accurate

Exact inference # 1 # 2 # 3 # 4
Particle filtering with no resampling # 1 # 2 # 3 # 4
Particle filtering with resampling before every time elapse # 1 # 2 # 3 # 4
Particle filtering with resampling before every other time elapse # 1 # 2 # 3 # 4
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Q3. Particle Filtering
You’ve chased your arch-nemesis Leland to the Stanford quad. You enlist two robo-watchmen to help find him!
The grid below shows the campus, with ID numbers to label each region. Leland will be moving around the
campus. His location at time step t will be represented by random variable Xt. Your robo-watchmen will also
be on campus, but their locations will be fixed. Robot 1 is always in region 1 and robot 2 is always in region
9. (See the * locations on the map.) At each time step, each robot gives you a sensor reading to help you
determine where Leland is. The sensor reading of robot 1 at time step t is represented by the random variable
Et,1. Similary, robot 2’s sensor reading at time step t is Et,2. The Bayes’ Net to the right shows your model of
Leland’s location and your robots’ sensor readings.

1* 2 3 4 5

6 7 8 9* 10

11 12 13 14 15

X0 X1 X2
...

E0,1

E0,2

E1,1

E1,2

E2,1

E2,2

In each time step, Leland will either stay in the same region or move to an adjacent region. For example, the
available actions from region 4 are (WEST, EAST, SOUTH, STAY). He chooses between all available actions
with equal probability, regardless of where your robots are. Note: moving off the grid is not considered an
available action.

Each robot will detect if Leland is in an adjacent region. For example, the regions adjacent to region 1 are 1,
2, and 6. If Leland is in an adjacent region, then the robot will report NEAR with probability 0.8. If Leland
is not in an adjacent region, then the robot will still report NEAR, but with probability 0.3.

For example, if Leland is in region 1 at time step t the probability tables are:

E P (Et,1|Xt = 1) P (Et,2|Xt = 1)

NEAR 0.8 0.3

FAR 0.2 0.7

(a) Suppose we are running particle filtering to track Leland’s location, and we start at t = 0 with particles
[X = 6, X = 14, X = 9, X = 6]. Apply a forward simulation update to each of the particles using the
random numbers in the table below.

Assign region IDs to sample spaces in numerical order. For example, if, for a particular particle,
there were three possible sucessor regions 10, 14 and 15, with associated probabilities, P (X = 10), P (X =
14) and P (X = 15), and the random number was 0.6, then 10 should be selected if 0.6 ≤ P (X = 10), 14
should be selected if P (X = 10) < 0.6 < P (X = 10) + P (X = 14), and 15 should be selected otherwise.
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Particle at t = 0 Random number for update Particle after forward simulation update

X = 6 0.864

X = 14 0.178

X = 9 0.956

X = 6 0.790
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(b) Some time passes and you now have particles [X = 6, X = 1, X = 7, X = 8] at the particular time step,
but you have not yet incorporated your sensor readings at that time step. Your robots are still in regions
1 and 9, and both report NEAR. What weight do we assign to each particle in order to incorporate this
evidence?

Particle Weight

X = 6

X = 1

X = 7

X = 8

(c) To decouple this question from the previous question, let’s say you just incorporated the sensor readings
and found the following weights for each particle (these are not the correct answers to the previous
problem!):

Particle Weight

X = 6 0.1

X = 1 0.4

X = 7 0.1

X = 8 0.2

Use the following random numbers to resample you particles. As on the previous page, assign region
IDs to sample spaces in numerical order.

Random number: 0.596 0.289 0.058 0.765

Particle:
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