
Section Handout 10 Solutions

HMMs
State variables Wt and observation (evidence) variables (Ot), which are supposed to be shaded below. Transition
model P (Wt+1|Wt). Sensor model P (Ot|Wt). The joint distribution of the HMM can be factorized as

P (W1, ...,WT , O1, ....OT ) = P (W1)
T−1∏
t=1

P (Wt+1|Wt)
T∏

t=1

P (Ot|Wt) (1)

Define the following belief distribution

• B(Wt) = P (Wt|O1, ..., Ot): Belief about state Wt given all the observations up until (and including)
timestep t.

• B′(Wt) = P (Wt|O1, ..., Ot−1): Belief about state Wt given all the observations up until (but not including)
timestep t.

Forward Algorithm
• Prediction update: B′(Wt+1) =

∑
wt

P (Wt+1|wt)B(wt)

• Observation update: B(Wt+1) ∝ P (Ot+1|Wt+1)B′(Wt+1)

Particle Filtering
The Hidden Markov Model analog to Bayes’ net sampling is called particle filtering, and involves simulating
the motion of a set of particles through a state graph to approximate the probability (belief) distribution of the
random variable in question.

Instead of storing a full probability table mapping each state to its belief probability, we’ll instead store a
list of n particles, where each particle is in one of the d possible states in the domain of our time-dependent
random variable.

Once we’ve sampled an initial list of particles, the simulation takes on a similar form to the forward algorithm,
with a time elapse update followed by an observation update at each timestep:
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• Prediction update - Update the value of each particle according to the transition model. For a particle
in state Wt, sample the updated value from the probability distribution given by Pr(Wt+1|wt). Note the
similarity of the prediction update to prior sampling with Bayes’ nets, since the frequency of particles in
any given state reflects the transition probabilities.

• Observation update - During the observation update for particle filtering, we use the sensor model
Pr(Ot|Wt) to weight each particle according to the probability dictated by the observed evidence and
the particle’s state. Specifically, for a particle in state wt with sensor reading ot, assign a weight of
Pr(ot|wt). The algorithm for the observation update is as follows:

1. Calculate the weights of all particles as described above.

2. Calculate the total weight for each state.

3. If the sum of all weights across all states is 0, reinitialize all particles.

4. Else, normalize the distribution of total weights over states and resample your list of particles from
this distribution.

Note the similarity of the observation update to likelihood weighting, where we again downweight samples
based on our evidence.
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1 HMMs
Consider the following Hidden Markov Model. O1 and O2 are supposed to be shaded.

W1 P (W1)
0 0.3
1 0.7

Wt Wt+1 P (Wt+1|Wt)
0 0 0.4
0 1 0.6
1 0 0.8
1 1 0.2

Wt Ot P (Ot|Wt)
0 a 0.9
0 b 0.1
1 a 0.5
1 b 0.5

Suppose that we observe O1 = a and O2 = b.
Using the forward algorithm, compute the probability distribution P (W2|O1 = a,O2 = b) one step at a time.

(a) Compute P (W1, O1 = a).

P (W1, O1 = a) = P (W1)P (O1 = a|W1)
P (W1 = 0, O1 = a) = (0.3)(0.9) = 0.27
P (W1 = 1, O1 = a) = (0.7)(0.5) = 0.35

(b) Using the previous calculation, compute P (W2, O1 = a).

P (W2, O1 = a) =
∑

w1
P (w1, O1 = a)P (W2|w1)

P (W2 = 0, O1 = a) = (0.27)(0.4) + (0.35)(0.8) = 0.388
P (W2 = 1, O1 = a) = (0.27)(0.6) + (0.35)(0.2) = 0.232

(c) Using the previous calculation, compute P (W2, O1 = a,O2 = b).

P (W2, O1 = a,O2 = b) = P (W2, O1 = a)P (O2 = b|W2)
P (W2 = 0, O1 = a,O2 = b) = (0.388)(0.1) = 0.0388
P (W2 = 1, O1 = a,O2 = b) = (0.232)(0.5) = 0.116

(d) Finally, compute P (W2|O1 = a,O2 = b).

Renormalizing the distribution above, we have
P (W2 = 0|O1 = a,O2 = b) = 0.0388/(0.0388 + 0.116) ≈ 0.25
P (W2 = 1|O1 = a,O2 = b) = 0.116/(0.0388 + 0.116) ≈ 0.75
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2 Particle Filtering
Let’s use Particle Filtering to estimate the distribution of P (W2|O1 = a,O2 = b). Here’s the HMM again. O1

and O2 are supposed to be shaded.

W1 P (W1)
0 0.3
1 0.7

Wt Wt+1 P (Wt+1|Wt)
0 0 0.4
0 1 0.6
1 0 0.8
1 1 0.2

Wt Ot P (Ot|Wt)
0 a 0.9
0 b 0.1
1 a 0.5
1 b 0.5

We start with two particles representing our distribution for W1.
P1 : W1 = 0
P2 : W1 = 1
Use the following random numbers to run particle filtering:

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

(a) Observe: Compute the weight of the two particles after evidence O1 = a.

w(P1) = P (Ot = a|Wt = 0) = 0.9
w(P2) = P (Ot = a|Wt = 1) = 0.5

(b) Resample: Using the random numbers, resample P1 and P2 based on the weights.

We now sample from the weighted distribution we found above. Using the first two random samples, we
find:
P1 = sample(weights, 0.22) = 0
P2 = sample(weights, 0.05) = 0

(c) Predict: Sample P1 and P2 from applying the time update.

P1 = sample(P (Wt+1|Wt = 0), 0.33) = 0
P2 = sample(P (Wt+1|Wt = 0), 0.20) = 0

(d) Update: Compute the weight of the two particles after evidence O2 = b.

w(P1) = P (Ot = b|Wt = 0) = 0.1
w(P2) = P (Ot = b|Wt = 0) = 0.1

(e) Resample: Using the random numbers, resample P1 and P2 based on the weights.

Because both of our particles have X = 0, resampling will still leave us with two particles with X = 0.
P1 = 0
P2 = 0
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(f) What is our estimated distribution for P (W2|O1 = a,O2 = b)?

P (W2 = 0|O1 = a,O2 = b) = 2/2 = 1
P (W2 = 1|O1 = a,O2 = b) = 0/2 = 0
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