Section Handout 10

HMMs

State variables W_{t} and observation (evidence) variables $\left(O_{t}\right)$, which are supposed to be shaded below. Transition model $P\left(W_{t+1} \mid W_{t}\right)$. Sensor model $P\left(O_{t} \mid W_{t}\right)$. The joint distribution of the HMM can be factorized as

$$
\begin{equation*}
P\left(W_{1}, \ldots, W_{T}, O_{1}, \ldots O_{T}\right)=P\left(W_{1}\right) \prod_{t=1}^{T-1} P\left(W_{t+1} \mid W_{t}\right) \prod_{t=1}^{T} P\left(O_{t} \mid W_{t}\right) \tag{1}
\end{equation*}
$$

Define the following belief distribution

- $B\left(W_{t}\right)=P\left(W_{t} \mid O_{1}, \ldots, O_{t}\right)$: Belief about state W_{t} given all the observations up until (and including) timestep t.
- $B^{\prime}\left(W_{t}\right)=P\left(W_{t} \mid O_{1}, \ldots, O_{t-1}\right)$: Belief about state W_{t} given all the observations up until (but not including) timestep t.

Forward Algorithm

- Prediction update: $B^{\prime}\left(W_{t+1}\right)=\sum_{w_{t}} P\left(W_{t+1} \mid w_{t}\right) B\left(w_{t}\right)$
- Observation update: $B\left(W_{t+1}\right) \propto P\left(O_{t+1} \mid W_{t+1}\right) B^{\prime}\left(W_{t+1}\right)$

Particle Filtering

The Hidden Markov Model analog to Bayes' net sampling is called particle filtering, and involves simulating the motion of a set of particles through a state graph to approximate the probability (belief) distribution of the random variable in question.

Instead of storing a full probability table mapping each state to its belief probability, we'll instead store a list of n particles, where each particle is in one of the d possible states in the domain of our time-dependent random variable.

Once we've sampled an initial list of particles, the simulation takes on a similar form to the forward algorithm, with a time elapse update followed by an observation update at each timestep:

- Prediction update - Update the value of each particle according to the transition model. For a particle in state W_{t}, sample the updated value from the probability distribution given by $\operatorname{Pr}\left(W_{t+1} \mid w_{t}\right)$. Note the similarity of the prediction update to prior sampling with Bayes' nets, since the frequency of particles in any given state reflects the transition probabilities.
- Observation update - During the observation update for particle filtering, we use the sensor model $\operatorname{Pr}\left(O_{t} \mid W_{t}\right)$ to weight each particle according to the probability dictated by the observed evidence and the particle's state. Specifically, for a particle in state w_{t} with sensor reading o_{t}, assign a weight of $\operatorname{Pr}\left(o_{t} \mid w_{t}\right)$. The algorithm for the observation update is as follows:

1. Calculate the weights of all particles as described above.
2. Calculate the total weight for each state.
3. If the sum of all weights across all states is 0 , reinitialize all particles.
4. Else, normalize the distribution of total weights over states and resample your list of particles from this distribution.

Note the similarity of the observation update to likelihood weighting, where we again downweight samples based on our evidence.

1 HMMs

Consider the following Hidden Markov Model. O_{1} and O_{2} are supposed to be shaded.

W_{1}	$P\left(W_{1}\right)$
0	0.3
1	0.7

W_{t}	W_{t+1}	$P\left(W_{t+1} \mid W_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_{t}	O_{t}	$P\left(O_{t} \mid W_{t}\right)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

Suppose that we observe $O_{1}=a$ and $O_{2}=b$.
Using the forward algorithm, compute the probability distribution $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$ one step at a time.
(a) Compute $P\left(W_{1}, O_{1}=a\right)$.
(b) Using the previous calculation, compute $P\left(W_{2}, O_{1}=a\right)$.
(c) Using the previous calculation, compute $P\left(W_{2}, O_{1}=a, O_{2}=b\right)$.
(d) Finally, compute $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$.

2 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$. Here's the HMM again. O_{1} and O_{2} are supposed to be shaded.

W_{1}	$P\left(W_{1}\right)$
0	0.3
1	0.7

W_{t}	W_{t+1}	$P\left(W_{t+1} \mid W_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_{t}	O_{t}	$P\left(O_{t} \mid W_{t}\right)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

We start with two particles representing our distribution for W_{1}.
$P_{1}: W_{1}=0$
$P_{2}: W_{1}=1$
Use the following random numbers to run particle filtering:

$$
[0.22,0.05,0.33,0.20,0.84,0.54,0.79,0.66,0.14,0.96]
$$

(a) Observe: Compute the weight of the two particles after evidence $O_{1}=a$.
(b) Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.
(c) Predict: Sample P_{1} and P_{2} from applying the time update.
(d) Update: Compute the weight of the two particles after evidence $O_{2}=b$.
(e) Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.
(f) What is our estimated distribution for $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$?

