
Section Handout 9 V2 Solutions

Sampling
Suppose we want to evaluate P (Q|E) where Q are the query variables and E are the evidence variables.

Prior Sampling: Draw samples from the Bayes net by sampling the parents and then sampling the children

given the parents. P (Q|E) ≈ count(QandE)
count(E) .

Rejection Sampling: Like prior sampling, but ignore all samples that are inconsistent with the evidence.

Likelihood Weighting: Fix the evidence variables, and weight each sample by the probability of the evidence
variables given their parents.

Gibbs Sampling:

1. Fix evidence.

2. Initialize other variables randomly

3. Repeat:

(a) Choose non-evidence variable X.

(b) Resample X from P (X|markovblanket(X))

Decision Networks
• Chance nodes - Chance nodes in a decision network behave identically to Bayes’ nets. Each outcome

in a chance node has an associated probability, which can be determined by running inference on the
underlying Bayes’ net it belongs to. We’ll represent these with ovals.

• Action nodes - Action nodes are nodes that we have complete control over; they’re nodes representing
a choice between any of a number of actions which we have the power to choose from. We’ll represent
action nodes with rectangles.

• Utility nodes - Utility nodes are children of some combination of action and chance nodes. They output
a utility based on the values taken on by their parents, and are represented as diamonds in our decision
networks.

The expected utility of taking an action A = a given evidence E = e and n chance nodes is computed with
the following formula:

EU(A = a|E = e) =
∑

x1,...,xn

P (X1 = x1, ..., Xn = xn|E = e)U(A = a,X1 = x1, ..., Xn = xn)

where each xi represents a value that the ith chance node can take on. The maximum expected utility is
the expected utility of the action that has the highest expected utility:

MEU(E = e) = max
a

EU(A = a|E = e).
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Value of Perfect Information
Value of perfect information (VPI) quantifies the amount an agent’s maximum expected utility is expected
to increase if it were to observe some new evidence. Usually observing new evidence comes at a cost. If we
observed some new evidence E′ = e′ before acting, the maximum expected utility of our action at that point
would become

MEU(E = e, E′ = e′) = max
a

∑
x

P (X = x|E = e, E′ = e′)U(X = x,A = a).

However, note that we don’t know what new evidence we’ll get. Because we don’t know what what new evidence
e′ we’ll get, we must represent it as a random variable E′. We will compute the expected value of the maximum
expected utility:

MEU(E = e, E′) =
∑
e′

P (E′ = e′|E = e)MEU(E = e, E′ = e′).

Observing a new evidence variable yields a different MEU with probabilities corresponding to the probabilities
of observing each value for the evidence variable, and so by computing MEU(E = e, E′) as above, we compute
what we expect our new MEU will be if we choose to observe new evidence. The VPI is the expected maximum
expected utility if we were to observe the new evidence, minus the maximum expected utility if we were not to
observe the new evidence:

V PI(E′|E = e) = MEU(E = e, E′)−MEU(E = e).

Properties of VPI
The value of perfect information has several very important properties, namely:

• Nonnegativity. ∀E′, e V PI(E′|E = e) ≥ 0
Observing new information always allows you to make a more informed decision, and so your maximum
expected utility can only increase (or stay the same if the information is irrelevant for the decision you
must make).

• Nonadditivity. V PI(Ej , Ek|E = e) 6= V PI(Ej |E = e) + V PI(Ek|E = e) in general.
This is probably the trickiest of the three properties to understand intuitively. It’s true because generally
observing some new evidence Ej might change how much we care about Ek; therefore we can’t simply add
the VPI of observing Ej to the VPI of observing Ek to get the VPI of observing both of them. Rather,
the VPI of observing two new evidence variables is equivalent to observing one, incorporating it into our
current evidence, then observing the other. This is encapsulated by the order-independence property of
VPI, described more below.

• Order-independence. V PI(Ej , Ek|E = e) = V PI(Ej |E = e) + V PI(Ek|E = e, Ej) = V PI(Ek|E =
e) + V PI(Ej |E = e, Ek)
Observing multiple new evidences yields the same gain in maximum expected utility regardless of the
order of observation. This should be a fairly straightforward assumption - because we don’t actually take
any action until after observing any new evidence variables, it doesn’t actually matter whether we observe
the new evidence variables together or in some arbitrary sequential order.
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HMMs
State variables Wt and observation (evidence) variables (Ot), which are supposed to be shaded below. Transition
model P (Wt+1|Wt). Sensor model P (Ot|Wt). The joint distribution of the HMM can be factorized as

P (W1, ...,WT , O1, ....OT ) = P (W1)

T−1∏
t=1

P (Wt+1|Wt)

T∏
t=1

P (Ot|Wt) (1)

Define the following belief distribution

• B(Wt) = P (Wt|O1, ..., Ot): Belief about state Wt given all the observations up until (and including)
timestep t.

• B′(Wt) = P (Wt|O1, ..., Ot−1): Belief about state Wt given all the observations up until (but not including)
timestep t.

Forward Algorithm
• Prediction update: B′(Wt+1) =

∑
wt
P (Wt+1|wt)B(wt)

• Observation update: B(Wt+1) ∝ P (Ot+1|Wt+1)B′(Wt+1)
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Q1. Bayes’ Nets Sampling
Assume the following Bayes’ net, and the corresponding distributions over the variables in the Bayes’ net:

BA C D
P (B|A)

�a �b 2/3
�a +b 1/3
+a �b 4/5
+a +b 1/5

P (A)
�a 3/4
+a 1/4

P (C|B)
�b �c 1/4
�b +c 3/4
+b �c 1/2
+b +c 1/2

P (D|C)
�c �d 1/8
�c +d 7/8
+c �d 5/6
+c +d 1/6

(a) You are given the following samples:

+a + b − c − d
+a − b + c − d
−a + b + c − d
−a − b + c − d

+a − b − c + d

+a + b + c − d
−a + b − c + d

−a − b + c − d

(i) Assume that these samples came from performing Prior Sampling, and calculate the sample estimate
of P (+c).
5/8

(ii) Now we will estimate P (+c | +a,−d). Above, clearly cross out the samples that would not be used
when doing Rejection Sampling for this task, and write down the sample estimate of P (+c | +a,−d)
below.
2/3

(b) Using Likelihood Weighting Sampling to estimate P (−a | +b,−d), the following samples were obtained.
Fill in the weight of each sample in the corresponding row.

Sample Weight

−a + b + c − d P (+b | −a)P (−d | +c) = 1/3 ∗ 5/6 = 5/18 = 0.277

+a + b + c − d P (+b | +a)P (−d | +c) = 1/5 ∗ 5/6 = 5/30 = 1/6 = 0.17

+a + b − c − d P (+b | +a)P (−d | −c) = 1/5 ∗ 1/8 = 1/40 = 0.025

−a + b − c − d P (+b | −a)P (−d | −c) = 1/3 ∗ 1/8 = 1/24 = 0.042

(c) From the weighted samples in the previous question, estimate P (−a | +b,−d).

5/18+1/24
5/18+5/30+1/40+1/24 = 0.625

(d) Which query is better suited for likelihood weighting, P (D | A) or P (A | D)? Justify your answer in one
sentence.

P (D | A) is better suited for likelihood weighting sampling, because likelihood weighting conditions only
on upstream evidence.
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(e) Recall that during Gibbs Sampling, samples are generated through an iterative process.

Assume that the only evidence that is available is A = +a. Clearly fill in the circle(s) of the sequence(s)
below that could have been generated by Gibbs Sampling.

Sequence 1

1 : +a −b −c +d
2 : +a −b −c +d
3 : +a −b +c +d

Sequence 2

1 : +a −b −c +d
2 : +a −b −c −d
3 : −a −b −c +d

Sequence 3

1 : +a −b −c +d
2 : +a −b −c −d
3 : +a +b −c −d

Sequence 4

1 : +a −b −c +d
2 : +a −b −c −d
3 : +a +b −c +d

Gibbs sampling updates one variable at a time and never changes the evidence.

The first and third sequences have at most one variable change per row, and hence could have been
generated from Gibbs sampling. In sequence 2, the evidence variable is changed. In sequence 4, the
second and third samples have both B and D changing.

2 Decision Networks and VPI
A used car buyer can decide to carry out various tests with various costs (e.g., kick the tires, take the car to a
qualified mechanic) and then, depending on the outcome of the tests, decide which car to buy. We will assume
that the buyer is deciding whether to buy car c and that there is time to carry out at most one test which
costs $50 and which can help to figure out the quality of the car. A car can be in good shape (of good quality
Q = +q) or in bad shape (of bad quality Q=¬q), and the test might help to indicate what shape the car is in.
There are only two outcomes for the test T: pass (T=pass) or fail (T=fail). Car c costs $1,500, and its market
value is $2,000 if it is in good shape; if not, $700 in repairs will be needed to make it in good shape. The buyer’s
estimate is that c has 70% chance of being in good shape. The Decision Network is shown below.

Q
T

Buy Car?

U

(a) Calculate the expected net gain from buying car c, given no test.

EU(buy) = P (Q = +q) · U(+q,buy) + P (Q = ¬q) · U(¬q, buy)

= .7 · 500 + 0.3 · −200 = 290

(b) Tests can be described by the probability that the car will pass or fail the test given that the car is in
good or bad shape. We have the following information:

P (T = pass|Q = +q) = 0.9

P (T = pass|Q = ¬q) = 0.2
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Calculate the probability that the car will pass (or fail) its test, and then the probability that it is in good
(or bad) shape given each possible test outcome.

P (T = pass) =
∑
q

P (T = pass, Q = q)

= P (T = pass|Q = +q)P (Q = +q) + P (T = pass|Q = ¬q)P (Q = ¬q)
= 0.69

P (T = fail) = 0.31

P (Q = +q|T = pass) =
P (T = pass|Q = +q)P (Q = +q)

P (T = pass)

=
0.9 · 0.7

0.69
=

21

23
≈ 0.91

P (Q = +q|T = fail) =
P (T = fail|Q = +q)P (Q = +q)

P (T = fail)

=
0.1 · 0.7

0.31
=

7

31
≈ 0.22

(c) Calculate the optimal decisions given either a pass or a fail, and their expected utilities.

EU(buy|T = pass) = P (Q = +q|T = pass)U(+q,buy) + P (Q = ¬q|T = pass)U(¬q,buy)

≈ 0.91 · 500 + 0.09 · (−200) ≈ 437

EU(buy|T = fail) = P (Q = +q|T = fail)U(+q,buy) + P (Q = ¬q|T = fail)U(¬q,buy)

≈ 0.22 · 500 + 0.78 · (−200) = −46

EU(¬buy|T = pass) = 0

EU(¬buy|T = fail) = 0

Therefore: MEU(T = pass) = 437 (with buy) and MEU(T = fail) = 0 (using ¬buy)

(d) Calculate the value of (perfect) information of the test. Should the buyer pay for a test?

V PI(T ) = (
∑
t

P (T = t)MEU(T = t))−MEU(φ)

= 0.69 · 437 + 0.31 · 0− 290 ≈ 11.53

You shouldn’t pay for it, since the cost is $50.

3 HMMs
Consider the following Hidden Markov Model. O1 and O2 are supposed to be shaded.

W1 P (W1)
0 0.3
1 0.7

Wt Wt+1 P (Wt+1|Wt)
0 0 0.4
0 1 0.6
1 0 0.8
1 1 0.2

Wt Ot P (Ot|Wt)
0 a 0.9
0 b 0.1
1 a 0.5
1 b 0.5

Suppose that we observe O1 = a and O2 = b.
Using the forward algorithm, compute the probability distribution P (W2|O1 = a,O2 = b) one step at a time.
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(a) Compute P (W1, O1 = a).

P (W1, O1 = a) = P (W1)P (O1 = a|W1)
P (W1 = 0, O1 = a) = (0.3)(0.9) = 0.27
P (W1 = 1, O1 = a) = (0.7)(0.5) = 0.35

(b) Using the previous calculation, compute P (W2, O1 = a).

P (W2, O1 = a) =
∑

w1
P (w1, O1 = a)P (W2|w1)

P (W2 = 0, O1 = a) = (0.27)(0.4) + (0.35)(0.8) = 0.388
P (W2 = 1, O1 = a) = (0.27)(0.6) + (0.35)(0.2) = 0.232

(c) Using the previous calculation, compute P (W2, O1 = a,O2 = b).

P (W2, O1 = a,O2 = b) = P (W2, O1 = a)P (O2 = b|W2)
P (W2 = 0, O1 = a,O2 = b) = (0.388)(0.1) = 0.0388
P (W2 = 1, O1 = a,O2 = b) = (0.232)(0.5) = 0.116

(d) Finally, compute P (W2|O1 = a,O2 = b).

Renormalizing the distribution above, we have
P (W2 = 0|O1 = a,O2 = b) = 0.0388/(0.0388 + 0.116) ≈ 0.25
P (W2 = 1|O1 = a,O2 = b) = 0.116/(0.0388 + 0.116) ≈ 0.75
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