
Section 5: RL Solutions

1 Learning in Gridworld

Consider the example gridworld that we looked at in lecture. We would like to use TD learning and q-learning to find the values
of these states.

Suppose that we have the following observed transitions:
(B, East, C, 2), (C, South, E, 4), (C, East, A, 6), (B, East, C, 2)

The initial value of each state is 0. Assume that  = 1 and � = 0.5.

1. What are the learned values from TD learning after all four observations?
V (B) = 3.5
V (C) = 4
All other states have a value of 0.

2. What are the learned Q-values from Q-learning after all four observations?
Q(B,East) = 3
Q(C, Soutℎ) = 2
Q(C,East) = 3
All other q-states have a value of 0.
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Q2. Pacman with Feature-Based Q-Learning
We would like to use a Q-learning agent for Pacman, but the size of the state space for a large grid is too massive to hold in
memory. To solve this, we will switch to feature-based representation of Pacman’s state.

1. We will have two features, Fg and Fp, defined as follows:

Fg(s, a) = A(s) + B(s, a) + C(s, a)
Fp(s, a) = D(s) + 2E(s, a)

where

A(s) = number of ghosts within 1 step of state s
B(s, a) = number of ghosts Pacman touches after taking action a from state s
C(s, a) = number of ghosts within 1 step of the state Pacman ends up in after taking action a
D(s) = number of food pellets within 1 step of state s

E(s, a) = number of food pellets eaten after taking action a from state s

For this pacman board, the ghosts will always be stationary, and the action space is {lef t, rigℎt, up, down, stay}.

calculate the features for the actions ∈ {lef t, rigℎt, up, stay}

Fp(s, up) = 1 + 2(1) = 3
Fp(s, lef t) = 1 + 2(0) = 1
Fp(s, rigℎt) = 1 + 2(0) = 1
Fp(s, stay) = 1 + 2(0) = 1
Fg(s, up) = 2 + 0 + 0 = 2

Fg(s, lef t) = 2 + 1 + 1 = 4
Fg(s, rigℎt) = 2 + 1 + 1 = 4
Fg(s, stay) = 2 + 0 + 2 = 4

2. After a few episodes of Q-learning, the weights are wg = −10 and wp = 100. Calculate the Q value for each action
∈ {lef t, rigℎt, up, stay} from the current state shown in the figure.

Q(s, up) = wpFp(s, up) +wgFg(s, up) = 100(3) + (−10)(2) = 280
Q(s, lef t) = wpFp(s, lef t) +wgFg(s, lef t) = 100(1) + (−10)(4) = 60
Q(s, rigℎt) = wpFp(s, rigℎt) +wgFg(s, rigℎt) = 100(1) + (−10)(4) = 60
Q(s, stay) = wpFp(s, stay) +wgFg(s, stay) = 100(1) + (−10)(4) = 60
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3. We observe a transition that starts from the state above, s, takes action up, ends in state s′ (the state with the food pellet
above) and receives a reward R(s, a, s′) = 250. The available actions from state s′ are down and stay. Assuming a
discount of  = 0.5, calculate the new estimate of the Q value for s based on this episode.

Qnew(s, a) = R(s, a, s′) +  ∗ max
a′

Q(s′, a′)

= 250 + 0.5 ∗ max{Q(s′, down), Q(s′, stay)}
= 250 + 0.5 ∗ 0
= 250

where

Q(s′, down) = wpFp(s, down) +wgFg(s, down) = 100(0) + (−10)(2) = −20
Q(s′, stay) = wpFp(s, stay) +wgFg(s, stay) = 100(0) + (−10)(0) = 0

4. With this new estimate and a learning rate (�) of 0.5, update the weights for each feature.

wp = wp + � ∗ (Qnew(s, a) −Q(s, a)) ∗ Fp(s, a) = 100 + 0.5 ∗ (250 − 280) ∗ 3 = 55
wg = wg + � ∗ (Qnew(s, a) −Q(s, a)) ∗ Fg(s, a) = −10 + 0.5 ∗ (250 − 280) ∗ 2 = −40
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Q3. MDPs and RL

Consider the above gridworld. An agent is currently on grid cell S, and would like to collect the rewards that lie on both sides of
it. If the agent is on a numbered square, its only available action is to Exit, and when it exits it gets reward equal to the number
on the square. On any other (non-numbered) square, its available actions are to move East and West. Note that North and South
are never available actions.

If the agent is in a square with an adjacent square downward, it does not always move successfully: when the agent is in one of
these squares and takes a move action, it will only succeed with probability p. With probability 1 − p, the move action will fail
and the agent will instead move downwards. If the agent is not in a square with an adjacent space below, it will always move
successfully.

For parts (a) and (b), we are using discount factor  ∈ [0, 1].

(a) Consider the policy �East, which is to always move East (right) when possible, and to Exit when that is the only available
action. For each non-numbered state x in the diagram below, fill in V �East (x) in terms of  and p.

(b) Consider the policy �West, which is to always move West (left) when possible, and to Exit when that is the only available
action. For each non-numbered state x in the diagram below, fill in V �West (x) in terms of  and p.
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(c) For what range of values of p in terms of  is it optimal for the agent to go West (left) from the start state (S)?

We want 52 ≥ 103p2, which we can solve to get:

Range: p ∈ [0, 1
√

2
]

(d) For what range of values of p in terms of  is �West the optimal policy?

We need, for each of the four cells, to have the value of that cell under �West to be at least as large as �East.
Intuitively, the farther east we are, the higher the value of moving east, and the lower the value of moving west (since the
discount factor penalizes far-away rewards).
Thus, if moving west is the optimal policy, we want to focus our attention on the rightmost cell.
At the rightmost cell, in order for moving west to be optimal, then V �East (s) ≤ V �West (s), which is 10p ≤ 54p2, or
p ≥ 2

3 .
However, since  ranges from 0 to 1, the right side of this expression ranges from 2 to ∞, which means p (a probability,
and thus bounded by 1) has no valid value.
Range: ∅

(e) For what range of values of p in terms of  is �East the optimal policy?

We follow the same logic as in the previous part. Specifically, we focus on the leftmost cell, where the condition for �East
to be the optimal policy is: 104p2 ≥ 5 , which simplifies to p ≥ 1

√

23
. Combined with our bound on any probability

being in the range [0, 1], we get:

Range: p ∈
[

1
√

23
, 1
]

, which could be an empty set depending on  .
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