## Introduction to Artificial Intelligence

## Q1. MDP

Pacman is using MDPs to maximize his expected utility. In each environment:

- Pacman has the standard actions \{North, East, South, West\} unless blocked by an outer wall
- There is a reward of 1 point when eating the dot (for example, in the grid below, $R(C, S o u t h, F)=1$ )
- The game ends when the dot is eaten
(a) Consider a the following grid where there is a single food pellet in the bottom right corner $(F)$. The discount factor is 0.5 . There is no living reward. The states are simply the grid locations.

(i) What is the optimal policy for each state?

| State | $\pi($ state $)$ |
| :---: | :--- |
| A | East or <br> South |
| B | East or <br> South |
| C | South |
| D | East |
| E | East |

(ii) What is the optimal value for the state of being in the upper left corner $(A)$ ? Reminder: the discount factor is 0.5 .
$V^{*}(A)=0.25$

| k | $\mathrm{V}(\mathrm{A})$ | $\mathrm{V}(\mathrm{B})$ | $\mathrm{V}(\mathrm{C})$ | $\mathrm{V}(\mathrm{D})$ | $\mathrm{V}(\mathrm{E})$ | $\mathrm{V}(\mathrm{F})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 0.5 | 1 | 0.5 | 1 | 0 |
| 3 | 0.25 | 0.5 | 1 | 0.5 | 1 | 0 |
| 4 | 0.25 | 0.5 | 1 | 0.5 | 1 | 0 |

(iii) Using value iteration with the value of all states equal to zero at $\mathrm{k}=0$, for which iteration $k$ will $V_{k}(A)=V^{*}(A) ?$
$k=3$ (see above)
(b) Consider a new Pacman level that begins with cherries in locations $D$ and $F$. Landing on a grid position with cherries is worth 5 points and then the cherries at that position disappear. There is still one dot, worth 1 point. The game still only ends when the dot is eaten.

(i) With no discount $(\gamma=1)$ and a living reward of -1 , what is the optimal policy for the states in this level's state space?

| State | $\pi($ state $)$ |
| :--- | :--- |
| $\mathrm{A}, \mathrm{D}_{\text {Cherry }}=$ true, $\mathrm{F}_{\text {Cherry }}=$ true | South |
| $\mathrm{A}, \mathrm{D}_{\text {Cherry }}=$ true, $\mathrm{F}_{\text {Cherry }}=$ false | South |
| $\mathrm{A}, \mathrm{D}_{\text {Cherr }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ true | East |
| $\mathrm{A}, \mathrm{D}_{\text {Cherry }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ false | East |
| $\mathrm{C}, \mathrm{D}_{\text {Cherry }}=$ true, $\mathrm{F}_{\text {Cherry }}=$ true | East |
| $\mathrm{C}, \mathrm{D}_{\text {Cherry }}=$ true, $\mathrm{F}_{\text {Cherry }}=$ false | East |
| $\mathrm{C}, \mathrm{D}_{\text {Cherry }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ true | East |
| $\mathrm{C}, \mathrm{D}_{\text {Cherry }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ false | North $/$ East |
| $\mathrm{D}, \mathrm{D}_{\text {Cherry }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ true | East |
| $\mathrm{D}, \mathrm{D}_{\text {Cherry }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ false | North |
| $\mathrm{E}, \mathrm{D}_{\text {Cherry }}=$ true, $\mathrm{F}_{\text {Cherry }}=$ true | East |
| $\mathrm{E}, \mathrm{D}_{\text {Cherry }}=$ true, $\mathrm{F}_{\text {Cherry }}=$ false | West |
| $\mathrm{E}, \mathrm{D}_{\text {Cherry }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ true | East |
| $\mathrm{E}, \mathrm{D}_{\text {Cherry }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ false | West |
| $\mathrm{F}, \mathrm{D}_{\text {Cherry }}=$ =true, $\mathrm{F}_{\text {Cherry }}=$ false | West |
| $\mathrm{F}, \mathrm{D}_{\text {Cherry }}=$ false, $\mathrm{F}_{\text {Cherry }}=$ false | West |

(ii) With no discount $(\gamma=1)$, what is the range of living reward values such that Pacman eats exactly one cherry when starting at position $A$ ?
Valid range for the living reward is ( $-2.5,-1.25$ ).
Let $x$ equal the living reward.
The reward for eating zero cherries $\{\mathrm{A}, \mathrm{B}\}$ is $x+1$ (one step plus food).
The reward for eating exactly one cherry $\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{B}\}$ is $3 x+6$ (three steps plus cherry plus food). The reward for eating two cherries $\{A, C, D, E, F, E, D, B\}$ is $7 x+11$ (seven steps plus two cherries plus food).
$x$ must be greater than -2.5 to make eating at least one cherry worth it $(3 x+6>x+1)$.
$x$ must be less than -1.25 to eat less than one cherry $(3 x+6>7 x+11)$.

## Q2. Strange MDPs

In this MDP, the available actions at state $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are $L E F T, R I G H T, U P$, and $D O W N$ unless there is a wall in that direction. The only action at state $\mathbf{D}$ is the EXIT ACTION and gives the agent a reward of $x$. The reward for non-exit actions is always 1 .

(a) Let all actions be deterministic. Assume $\gamma=\frac{1}{2}$. Express the following in terms of $x$.

$$
\begin{array}{ll}
V^{*}(D)=x & V^{*}(C)=\max (1+0.5 x, 2) \\
V^{*}(A)=\max (1+0.5 x, 2) & V^{*}(B)=\max (1+0.5(1+0.5 x), 2)
\end{array}
$$

The 2 comes from the utility being an infinite geometric sum of discounted reward $=\frac{1}{\left(1-\frac{1}{2}\right)}=2$
(b) Let any non-exit action be successful with probability $=\frac{1}{2}$. Otherwise, the agent stays in the same state with reward $=0$. The EXIT ACTION from the state $\mathbf{D}$ is still deterministic and will always succeed. Assume that $\gamma=\frac{1}{2}$.

For which value of $x$ does $Q^{*}(A, D O W N)=Q^{*}(A, R I G H T)$ ? Box your answer and justify/show your work.
$Q^{*}(A, D O W N)=Q^{*}(A, R I G H T)$ implies $V^{*}(A)=Q^{*}(A, D O W N)=Q^{*}(A, R I G H T)$

$$
\begin{align*}
& V^{*}(A)=Q^{*}(A, D O W N)=\frac{1}{2}\left(0+\frac{1}{2} V^{*}(A)\right)+\frac{1}{2}\left(1+\frac{1}{2} x\right)=\frac{1}{2}+\frac{1}{4}\left(V^{*}(A)\right)+\frac{1}{4} x  \tag{1}\\
& V^{*}(A)=\frac{2}{3}+\frac{1}{3} x  \tag{2}\\
& V^{*}(A)=Q^{*}(A, R I G H T)=\frac{1}{2}\left(0+\frac{1}{2} V^{*}(A)\right)+\frac{1}{2}\left(1+\frac{1}{2} V^{*}(B)\right)=\frac{1}{2}+\frac{1}{4} V^{*}(A)+\frac{1}{4} V^{*}(B)  \tag{3}\\
& V^{*}(A)=\frac{2}{3}+\frac{1}{3} V^{*}(B) \tag{4}
\end{align*}
$$

Because $Q^{*}(B, L E F T)$ and $Q^{*}(B, D O W N)$ are symmetric decisions, $V^{*}(B)=Q^{*}(B, L E F T)$.

$$
\begin{align*}
V^{*}(B) & =\frac{1}{2}\left(0+\frac{1}{2} V^{*}(B)\right)+\frac{1}{2}\left(1+\frac{1}{2} V^{*}(A)\right)=\frac{1}{2}+\frac{1}{4} V^{*}(B)+\frac{1}{4} V^{*}(A)  \tag{5}\\
V^{*}(B) & =\frac{2}{3}+\frac{1}{3} V^{*}(A) \tag{6}
\end{align*}
$$

Combining (2), (4), and (6) gives us:

$$
\begin{equation*}
x=1 \tag{7}
\end{equation*}
$$

There is also a shortcut which involves you noticing that the problem is highly symmetrical such that $Q^{*}(A, D O W N)=Q^{*}(A, R I G H T)$ is the same as solving the equivalence of $V^{*}(A)$ in the previous part and the utility of an infinite cycle with reward scaled by half (to account for staying) and discount $=0.5$. That leads us to conclude $0.5+0.5 x=\frac{0.5}{1-0.5}=1$ so $x=1$
(c) We now add one more layer of complexity. Turns out that the reward function is not guaranteed to give a particular reward when the agent takes an action. Every time an agent transitions from one state to another, once the agent reaches the new state $s^{\prime}$, a fair 6 -sided dice is rolled. If the dices lands with value $x$, the agent receives the reward $R\left(s, a, s^{\prime}\right)+x$. The sides of dice have value $1,2,3,4,5$ and 6 .
Write down the new bellman update equation for $V_{k+1}(s)$ in terms of $T\left(s, a, s^{\prime}\right), R\left(s, a, s^{\prime}\right), V_{k}\left(s^{\prime}\right)$, and $\gamma$.
$\frac{V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[\frac{1}{6}\left(\sum_{i=1}^{6} R\left(s, a, s^{\prime}\right)+i\right)+\gamma V_{k}(s)\right]}{=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left(R\left(s, a, s^{\prime}\right)+3.5+\gamma V_{k}(s)\right)}$

## Q3. MDPs: Reward Shaping

PacBot is in a Gridworld-like environment E. It moves deterministically Up, Down, Right, or Left, or at any time it can exit to a terminal state (where it remains). If PacBot is on a square with a number written on it, it receives a reward of that size on Exiting, and it receives a reward of 0 for Exiting on a blank square. Note that when it is on any of the squares (including numbered squares), it can either move Up, Down, Right, Left or Exit. However, it only receives a non-zero reward when it Exits on a numbered square.
(a) Draw an arrow in each square (including numbered squares) in the following board to indicate the optimal policy PacBot will calculate with the discount factor $\gamma=0.5$. (For example, if PacBot would move Down from the square in the middle, draw a down arrow in that square.) If PacBot's policy would be to exit from a particular square, draw an X in that square.


In order to speed up computation, Pacbot computes its optimal policy in a new environment $E^{\prime}$ with a different reward function $R^{\prime}\left(s, a, s^{\prime}\right)$. If $R\left(s, a, s^{\prime}\right)$ is the reward function in the original environment $E$, then $R^{\prime}\left(s, a, s^{\prime}\right)=$ $R\left(s, a, s^{\prime}\right)+F\left(s, a, s^{\prime}\right)$ is the reward function in the new environment $E^{\prime}$, where $F\left(s, a, s^{\prime}\right) \in \mathbb{R}$ is an added "artificial" reward. If the artificial rewards are defined carefully, PacBot's policy will converge in fewer iterations in this new environment $E^{\prime}$.
(b) To decouple from the previous question's board configuration, let us consider that Pacbot is operating in the world shown below. Pacbot uses a function $F$ defined so that $F\left(s, a, s^{\prime}\right)=10$ if $s^{\prime}$ is closer to C relative to $s$, and $F\left(s, a, s^{\prime}\right)=0$ otherwise (consider C to be closer to C than B or A ). Let us also assume that the action space is now restricted to be between Right, Left, and Exit only.


Either left or right from B is correct.
In the diagram above, indicate by drawing an arrow or an X in each square, as in part (a), the optimal policy that PacBot will compute in the new environment $E^{\prime}$ using $\gamma=0.5$ and the modified reward function $R^{\prime}\left(s, a, s^{\prime}\right)$.
(c) PacBot's utility comes from the discounted sum of rewards in the original environment. What is PacBot's expected utility of following the policy computed above, starting in state A if $\gamma=0.5$ ? 0
(d) Find a non-zero value for $x$ in the table showing $F\left(s, a, s^{\prime}\right)$ drawn below, such that PacBot is guaranteed to compute an optimal policy that maximizes its expected true utility for any discount factor $\gamma \in[0,1)$.

|  | Value |
| :---: | :---: |
| $F(A$, Right,$B)$ | 10 |
| $F(B$, Left, $A)$ | $x$ |
| $F(B$, Right,$C)$ | 10 |
| $F(C$, Left,$B)$ | $x$ |

$x=$ $\qquad$

