Introduction to Artificial Intelligence Exam Prep 6 Solutions

Q1. Bayes Nets and Joint Distributions

(a) Write down the joint probability distribution associated with the following Bayes Net. Express the answer as a product of terms representing individual conditional probabilities tables associated with this Bayes Net:

P(A)P(B)P(C|A, B)P(D|A, B)P(E|C, D)

(b) Draw the Bayes net associated with the following joint distribution: $P(A) \cdot P(B) \cdot P(C|A, B) \cdot P(D|C) \cdot P(E|B, C)$

(c) Do the following products of factors correspond to a valid joint distribution over the variables *A*, *B*, *C*, *D*? (Circle FALSE or TRUE.)

(i)	FALSE TRUE	$P(A) \cdot P(B) \cdot P(C A) \cdot P(C B) \cdot P(D C)$
(ii)	FALSE TRUE	$P(A) \cdot P(B A) \cdot P(C) \cdot P(D B,C)$
(iii)	FALSE TRUE	$P(A) \cdot P(B A) \cdot P(C) \cdot P(C A) \cdot P(D)$
(iv)	FALSE TRUE	$P(A B) \cdot P(B C) \cdot P(C D) \cdot P(D A)$

- (d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write "none" if the given set of factors can't be turned into a joint by the inclusion of exactly one more factor.)
 - (i) $P(A) \cdot P(B|A) \cdot P(C|A) \cdot P(E|B, C, D)$ P(D) is missing. D could also be conditioned on A,B, and/or C without creating a cycle (e.g. P(D|A, B, C)). Here is an example bayes net that would represent the distribution after adding in P(D):

(ii) $P(D) \cdot P(B) \cdot P(C|D, B) \cdot P(E|C, D, A)$

P(A) is missing to form a valid joint distributions. A could also be conditioned on B, C, and/or D (e.g. P(A|B, C, D). Here is a bayes net that would represent the distribution is P(A|D) was added in.

(e) Answer the next questions based off of the Bayes Net below: All variables have domains of {-1, 0, 1}

- (i) Before eliminating any variables or including any evidence, how many entries does the factor at G have? The factor is P(G|B,C), so that gives $3^3 = 27$ entries.
- (ii) Now we observe e = 1 and want to query P(D|e = 1), and you get to pick the first variable to be eliminated.
 - Which choice would create the **largest** factor f_1 ? Eliminating *B* first would give the largest f_1 :, $f_1(A, F, G, C, e) = \sum_{B=b} P(b)P(e|A, b)P(F|b)P(G|b, C)P(C|b)$. This factor has 3^4 entries.
 - Which choice would create the **smallest** factor f_1 ? eliminating F first would give smallest factors of 3 entries: $f_1(B) = \sum_f P(f|B)$. Eliminating D is not correct because D is the query variable.

Q2. Probability and Bayes Nets

(a) A, B, and C are random variables with binary domains. How many entries are in the following probability tables and what is the sum of the values in each table? Write a "?" in the box if there is not enough information given.

Table	Size	Sum
P(A, B C)	8	2
P(A +b,+c)	2	1
P(+a B)	2	?

(b) Circle true if the following probability equalities are valid and circle false if they are invalid (leave it blank if you don't wish to risk a guess). Each True/False question is worth 1 points. Leaving a question blank is worth 0 points. Answering incorrectly is worth -1 points.

No independence assumptions are made.

- (i) [*true* or *false*] P(A, B) = P(A|B)P(A)False. $\overline{P(A, B)} = P(A|B)P(B)$ would be a valid example.
- (ii) [*true* or *false*] P(A|B)P(C|B) = P(A, C|B)False. This assumes that A and C are conditionally independent given B.
- (iii) [*true* or <u>false</u>] $P(B,C) = \sum_{a \in A} P(B,C|A)$ False. $P(B,C) = \sum_{a \in A} P(A,B,C)$ would be a valid example.
- (iv) [*true* or *false*] P(A, B, C, D) = P(C)P(D|C)P(A|C, D)P(B|A, C, D)True. This is a valid application of the chain rule.

(c) Space Complexity of Bayes Nets

Consider a joint distribution over N variables. Let k be the domain size for all of these variables, and let d be the maximum indegree of any node in a Bayes net that encodes this distribution.

(i) What is the space complexity of storing the entire joint distribution? Give an answer of the form $O(\cdot)$.

 $O(k^N)$ was the intended answer. Because of the potentially misleading wording, we also allowed $O(Nk^{d+1})$, one possible bound on the space complexity of storing the Bayes net $(O((N-d)k^{d+1}))$ is an asymptotically tighter bound, but this requires considerably more effort to prove).

(ii) Draw an example of a Bayes net over four binary variables such that it takes less space to store the Bayes net than to store the joint distribution.

A simple Markov chain works. Size 2 + 4 + 4 = 14, which is less than $2^4 = 16$. Less edges, less inbound edges (v-shape), or no edges would work too.

(iii) Draw an example of a Bayes net over four binary variables such that it takes more space to store the Bayes net than to store the joint distribution.

Size $2 + 2 + 2 + 2^4 = 22$, which is more than $2^4 = 16$. Other configurations could work too, especially any with a node with indegree 3.

