Q1. Bayes Nets and Joint Distributions

(a) Write down the joint probability distribution associated with the following Bayes Net. Express the answer as a product of terms representing individual conditional probabilities tables associated with this Bayes Net:

$P(A) P(B) P(C \mid A, B) P(D \mid A, B) P(E \mid C, D)$
(b) Draw the Bayes net associated with the following joint distribution:
$P(A) \cdot P(B) \cdot P(C \mid A, B) \cdot P(D \mid C) \cdot P(E \mid B, C)$

(c) Do the following products of factors correspond to a valid joint distribution over the variables A, B, C, D ? (Circle FALSE or TRUE.)

| (i) | FALSE TRUE | $P(A) \cdot P(B) \cdot P(C \mid A) \cdot P(C \mid B) \cdot P(D \mid C)$ |
| :--- | :--- | :--- | :--- |
| (ii) FALSE TRUE | $P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$ | |
| (iii) | FALSE TRUE | $P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(C \mid A) \cdot P(D)$ |
| (iv) | FALSE TRUE | $P(A \mid B) \cdot P(B \mid C) \cdot P(C \mid D) \cdot P(D \mid A)$ |

(d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write "none" if the given set of factors can't be turned into a joint by the inclusion of exactly one more factor.)
(i) $P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(E \mid B, C, D)$
$\mathrm{P}(\mathrm{D})$ is missing. D could also be conditioned on A, B, and/or C without creating a cycle (e.g. $P(D \mid A, B, C)$). Here is an example bayes net that would represent the distribution after adding in $P(D)$:

(ii) $P(D) \cdot P(B) \cdot P(C \mid D, B) \cdot P(E \mid C, D, A)$
$\mathrm{P}(\mathrm{A})$ is missing to form a valid joint distributions. A could also be conditioned on B, C, and/or D (e.g. $P(A \mid B, C, D)$. Here is a bayes net that would represent the distribution is $P(A \mid D)$ was added in.

(e) Answer the next questions based off of the Bayes Net below:

All variables have domains of $\{-1,0,1\}$

(i) Before eliminating any variables or including any evidence, how many entries does the factor at G have?

The factor is $P(G \mid B, C)$, so that gives $3^{3}=27$ entries.
(ii) Now we observe $e=1$ and want to query $P(D \mid e=1)$, and you get to pick the first variable to be eliminated.

- Which choice would create the largest factor f_{1} ?

Eliminating B first would give the largest $f_{1}:, f_{1}(A, F, G, C, e)=\sum_{B=b} P(b) P(e \mid A, b) P(F \mid b) P(G \mid b, C) P(C \mid b)$.
This factor has 3^{4} entries.

- Which choice would create the smallest factor f_{1} ?
eliminating F first would give smallest factors of 3 entries: $f_{1}(B)=\sum_{f} P(f \mid B)$. Eliminating D is not correct because D is the query variable.

Q2. Probability and Bayes Nets

(a) A, B, and C are random variables with binary domains. How many entries are in the following probability tables and what is the sum of the values in each table? Write a "?" in the box if there is not enough information given.

Table	Size	Sum
$\boldsymbol{P}(\boldsymbol{A}, \boldsymbol{B} \mid \boldsymbol{C})$	8	2
$\boldsymbol{P}(\boldsymbol{A} \mid+b,+c)$	2	1
$\boldsymbol{P}(+a \mid \boldsymbol{B})$	2	$?$

(b) Circle true if the following probability equalities are valid and circle false if they are invalid (leave it blank if you don't wish to risk a guess). Each True/False question is worth 1 points. Leaving a question blank is worth 0 points. Answering incorrectly is worth $\mathbf{- 1}$ points.
No independence assumptions are made.
(i) [true or false] $P(A, B)=P(A \mid B) P(A)$

False. $\overline{P(A, B)}=P(A \mid B) P(B)$ would be a valid example.
(ii) [true or false] $P(A \mid B) P(C \mid B)=P(A, C \mid B)$

False. This assumes that A and C are conditionally independent given B.
(iii) [true or false] $P(B, C)=\sum_{a \in A} P(B, C \mid A)$

False. $\overline{P(B, C)}=\sum_{a \in A} P(A, B, C)$ would be a valid example.
(iv) [true or false] $P(A, B, C, D)=P(C) P(D \mid C) P(A \mid C, D) P(B \mid A, C, D)$

True. This is a valid application of the chain rule.
(c) Space Complexity of Bayes Nets

Consider a joint distribution over N variables. Let k be the domain size for all of these variables, and let d be the maximum indegree of any node in a Bayes net that encodes this distribution.
(i) What is the space complexity of storing the entire joint distribution? Give an answer of the form $O(\cdot)$.
$O\left(k^{N}\right)$ was the intended answer. Because of the potentially misleading wording, we also allowed $O\left(N k^{d+1}\right)$, one possible bound on the space complexity of storing the Bayes net $\left(O\left((N-d) k^{d+1}\right)\right.$ is an asymptotically tighter bound, but this requires considerably more effort to prove).
(ii) Draw an example of a Bayes net over four binary variables such that it takes less space to store the Bayes net than to store the joint distribution.
A simple Markov chain works. Size $2+4+4+4=14$, which is less than $2^{4}=16$. Less edges, less inbound edges (v-shape), or no edges would work too.

(iii) Draw an example of a Bayes net over four binary variables such that it takes more space to store the Bayes net than to store the joint distribution.
Size $2+2+2+2^{4}=22$, which is more than $2^{4}=16$. Other configurations could work too, especially any with a node with indegree 3 .

